T-w-f.ru

Ремонт от TWF
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Геофизические методы контроля технического состояния скважины

Геофизические методы контроля технического состояния скважины

Нестационарный режим фильтрации.

Нестационарный режим фильтрации — это не какой-то произвольно меняющийся режим, а режим, изменение которого происходит только под действием упругих сил пласта и жидкости или газа. Переход на неустановившийся режим осуществляется резким изменением дебита добывающей и нагнетательной скважины. Чаще всего скважина, работавшая на установившемся режиме, останавливается, и осуществляется регистрация изменения давления во времени.

8. Конструкция скважины при геологоразведочных работах на нефть и газ.

9. Региональный этап, стадии и комплексность работ.

Региональный этап изучения недр предшествует поисково-оценочному этапу и проводится до тех пор, пока существуют благоприятные предпосылки для обнаружения новых перспективных комплексов на неосвоенных глубинах и зон нефтегазонакопления в слабоизученных районах. В пределах нефтегазоносных районов региональные работы могут проводиться одновременно с поисково-оценочными и разведочными работами.

Типовой комплекс региональных работ этой стадии включает:

— дешифрирование материалов аэро-, фото- и космических съемок, геологическую, гидрогеологическую, структурно-геоморфологическую, геохимическую мелкомасштабные съемки и другие исследования;

— аэромагнитную, гравиметрическую съемки масштабов 1:200000 1:50000 и электроразведку;

— сейсморазведочные работы по системе опорных профильных пересечений;

— бурение опорных и параметрических скважин на опорных профилях в различных структурно-фациальных условиях;

+- обобщение и анализ геолого-геофизической информации, результатов бурения скважин.

На стадии прогноза нефтегазоносности по результатам работ и обобщения материалов составляются отчеты (годовые и окончательные) о геологических результатах и оценке прогнозных ресурсов категорий Д_2 и частично Д_1.

— схема расположения профилей, физических точек наблюдений и скважин на исходной геологической и тектонической основе;

— сводные нормальные геолого-геофизические разрезы отложений, изученных крупных геоструктурных элементов осадочного бассейна;

— геолого-геофизические разрезы опорных и параметрических скважин с выделенными опорными и маркирующими горизонтами и с результатами испытания;

— схемы межрайонной корреляции разрезов изученных отложений;

— опорные геологические и геофизические разрезы, характеризующие строение бассейна и крупных структур;

— схема тектонического районирования бассейна в целом или отдельной изученной его части;

— литолого-фациальные схемы и палеосхемы нефтегазо-перспективных комплексов разреза;

+- схемы нефтегазогеологического районирования с дифференцированием территорий (акваторий) по перспективам нефтегазоносности и выделением первоочередных зон для проведения работ следующей стадии.

10. Стационарный режим фильтрации.

Результаты таких исследований необходимы для:

-определения запасов газа и конденсата;

-проектирования и анализа разработки месторождения;

-установления режимов работы скважин.

По результатам исследования скважин при стационарных режимах фильтрации определяются:

-пластовые, забойные давления – Р пл , Рзаб;

-зависимость дебита Q от депрессии — Р;

-максимально допустимые дебиты;

-факторы, ограничивающие дебиты;

-коэффициенты фильтрационных сопротивлений а, b;

-свободный дебит скважины (Руст = 1 кгс/см 2 );

-абсолютно свободный дебит (Рзаб=1кгс/см 2 ).

11. Обоснование выбора и критерии качества подготовки структур для ввода в поисковое бурение.

Геологические задачи на стадии поисков и оценки перспектив нефтегазоносности структуры следующие:

  • — выявление залежей углеводородов;
  • — литолого-стратиграфическое расчленение разреза;
  • — уточнение структурных построений и геологической модели выявленных структур;
  • — испытание и опробование перспективных интервалов разреза;
  • — оценка их добываемых возможностей (в случае получения притоков УВ);
  • — подсчет запасов нефти по категориям С12;
  • — предварительная геолого-экономическая оценка выявленного месторождения;
  • — обоснование необходимости постановки разведочных работ.

Для решения поставленных геологических задач предусматривается:

  • — отбор керна, шлама, проб нефти, газа, конденсата, воды и их лабораторное изучение;
  • — геофизические исследования скважины и их качественная и количественная интерпретация;
  • — геохимические, гидрогеологические, гидродинамические и другие виды исследований скважины в процессе бурения, опробования и испытания.

14. Сейсмический отражающий горизонт , его определение и назначение.

· Разведочные скважины планируются на месторождении по трем основным системам: треугольной кольцевой и профильной. Система размещения скважин — это рациональное распределение минимального количества скважин для определения всех подсчетных параметров для подсчета запасов углеводородного сырья.

· Треугольная система. Скважины размещаются в вершинах равностороннего треугольника. Каждая последующая скважина бурится только после получения результатов по предыдущей. Используется для разведки сложно построенных залежей. При треугольной схеме осуществляется высокая степень изученности месторождения, достигается низкое количество непродуктивных скважин (рис. 1.А).

· Кольцевая система. Скважины размещаются «по кольцу» на одинаковых гипсометрических отметках. Используется для разведки простых по строению месторождений и при наличии потребителя. При этой схеме достигается высокая скорость разведки, так как одно кольцо можно бурить одновременно, а скважины использовать, как эксплуатационные. При обводнении наружного кольца скважин, их можно использовать как нагнетательные для поддержания пластового давления (рис. 1.Б).

· Профильная система. Скважины размещаются по профилям — в крест простирания структуры. Используется на большинстве месторождений Западной Сибири. При усложнении строения месторождения можно бурить дополнительные скважины в профилях, либо дополнительные профили скважин, не нарушая при этом выбранную систему разведки. При этом достигается высокая степень изученности месторождения (рис. 1.В).

· Иногда применяется также смешанная схема размещения скважин.

15.Палеотектонический анализ. Его сущность и назначение.

Он позволяет выяснить историю формирования структурных элементов по значению толщин литолого-стратиграфического комплекса и дает возможность оценить перспективы нефтегазоносности.

В основу этого анализа положено соображение о том, что на территории не происходило эрозии, разрушения и уплотнения осадочных толщ. Метод не применим в случае соляно-купольной тектоники и биогермов (рифов, баров). Для его проведения нужен следующий комплекс документов:

  • · Палеотектонические профили по линии скважин, они наглядны, но малоинформативные, так как структура исследуется по линии скважин, а не по всей площади;
  • · Карты толщин — менее наглядны, но более информативны;
  • · Карты суммарных толщин;
  • · Изопахический треугольник;

Для данного анализа были построены следующие документы:

  • · Палеотектонические профили по линии скважин 4,12,6,5,1. (рис. 4), исходным материалом для построения палеотектонических профилей служит современный структурный профиль;
  • · Карты мощностей J2, J3 (рис. 5)
  • · Карты суммарных мощностей (рис. 6)

16.Методы контроля технического состояния скважины в процессе бурения и эксплуатации.

Геофизические методы контроля технического состояния скважины

При контроле за техническим состоянием скважины производятся и решаются следующие задачи:

· определение качества цементирования и состояния цементного камня во времени;

· установление местоположения муфтовых соединений колонны, участков перфорации, толщины и внутреннего диаметра;

· выявление дефектов в обсадных и насосно-компрессорных трубах (отверстия, трещины, вмятины);

· определение мест притока или поглощения и интервалов затрубной циркуляции жидкости;

· контроль за установкой глубинного оборудования;

· оценка толщины парафиновых отложений в межтрубном пространстве.

Профилеметрия

Скважинная профилеметрия — это метод определения размеров и формы поперечного сечения скважины и их изменений с глубиной. Метод имеет две модификации — вертикальную и горизонтальную. При вертикальной профилеметрии регистрируют изменения формы и размеров поперечного сечения по стволу. При горизонтальной профилеметрии более детально изучается профиль поперечного сечения на фиксированной глубине.

Дата добавления: 2021-01-20 ; просмотров: 10 ; Мы поможем в написании вашей работы!

Геофизические исследования скважин

Геофизические исследования скважин (ГИС) представляют собой комплекс физических методов, которые используются для изучения горных пород, а также контроля технического состояния буровых.

По своему назначению такие исследования делятся на две группы. Это непосредственно методы каротажа и скважинной геофизики. Первый известный также как промысловая или буровая наука изучения пород, которые находятся в радиусе 1-2 километров.

Зачастую эти два термина являются тождественными. В любом случае исследования ведутся с применением методов разведочной геофизики.

В последние годы изучение магматических пород набирает стремительных оборотов. ГИС проводится на всех этапах геологоразведочных работ, которые касаются нефти и газа.

Геофизические исследования скважин позволяют непосредственно охарактеризовать:

  • разрез скважин;
  • литологию;
  • параметры пластов и т.д.

Геофизические исследования проводятся, как правило, в околоскважинном и межскважинном пространстве. Исходя из результатов, выполняются необходимые геологические построения.

Например:

  • структурные карты;
  • профили;
  • карты изопахит и другие.

Они необходимы для изучения строения нефтегазовых объектов, а также подсчета запасов углеводородов в скважинах. Отличным вариантом для изучения образования отрасли, а также ее тенденций и направлений станет посещение выставки «Нефтегаз», организатором которой является всемирно известный комплекс ЦВК «Экспоцентр».

Применение метода каротажа в исследованиях скважин

Любая скважина находится под существенной внешней нагрузкой. Это приводит к тому, что материал начнет терять свои физические свойства через короткий промежуток времени после введения его в эксплуатацию.

На скважину оказывают влияние:

  • давление породы;
  • повышенная влажность;
  • температурные перепады.

Методы исследований называются геофизическими в связи с тем, что осуществляется изучение не только самой буровой, но и прилегающих горных пород. Необходимость его проведения очевидна. От структуры и плотности породы напрямую зависит срок службы буровой.

Рассматривая виды геофизических исследований скважин, стоит отметить то, что на сегодняшний день их существует огромное количество. Посредством применения можно изучить горные породы, а также проконтролировать техническое состояние буровой. Все методы ГИС включают в себя электрические варианты. Это непосредственно каротаж сопротивлений. Такой набор методик дает возможность провести множество исследований.

Также следует отметить существование ядерно-геофизических вариантов. Они относятся к методам каротажа, а их основой является изучение гамма-излучения и реакция горной породы.

Основные виды геофизических исследований скважин

Классификация геофизических исследований скважин осуществляется по виду изучаемых полей. На сегодняшний день известно более 50 различных методов. Они имеют существенные различия между собой и применяются в зависимости от определенного типа проведения работ.

Основные виды геофизических исследований включают следующие методы:

  • электрические;
  • ядерные;
  • термические;
  • сейсмоакустические;
  • магнитные.

В основном ГИС представляют собой каротажи различного рода. Это значит, что прослеживание за изменением необходимых величин осуществляется посредством спускаемого на электрокабеле специального прибора, который снабжается соответствующей аппаратурой.

Геофизические методы исследования скважин необходимы непосредственно для нахождения физической и гидрогеологической характеристик продуктивной толщи.

Характеристики толщи определяют следующими способами:

  • электрическим каротажем;
  • кавернометрией;
  • расходометрией;
  • термометрией и т.д.

Сравнение получаемых результатов комплексного исследования позволяет составить полную характеристику углеводородного горизонта.

Технология проведения геофизических исследований скважин

Для обработки и интерпретации геофизических исследований скважин применяется контроль результатов бурения.

Контроль включает следующие этапы проведения работ:

  • определение технического состояния буровой;
  • фототелеметрию стенок;
  • перфорацию скважин для допуска в нее воды, нефти, газа и др.

Такой контроль проводится с помощью специального оборудования непосредственно в ходе или после окончания бурения. Технология геофизических исследований скважин ставит перед собой основную задачу – выделение в разрезах пластов полезных ископаемых, а также изучение их основного состава. Эти работы выполняются на этапах поиска и разведки месторождений.

В данном случае наибольшие перспективы для решения поставленных задач предоставляют ядерно-геофизические методы. Они основываются на прямых измерениях эффектов от искомых элементов. Горные породы напрямую определяют качество разведываемых углеводородов. Технология ГИС с применением ЯГФМ применима для всех основных типов месторождений твердых ископаемых.

Стоит отметить и то, что в настоящее время ни одно исследование не обходится без применения компьютерной техники. Многие думают, что такой метод дает наиболее точный результат. Однако на практике это совершенно не так. На самом деле компьютерные технологии помогают только облегчить задачу. ЭВМ дают возможность наиболее быстро провести расчеты необходимые для получения результатов исследований.

Промысловые геофизические исследования скважин

В зависимости от геологических условий района определяется соответствующий метод. Промыслово-геофизические исследования скважин должны при возможно меньшем числе замеров обеспечить максимально полную информацию о разрезе буровой, а также выявлении коллекторов и их непосредственную оценку. Такой комплекс работ, в основном, выполняется партиями. Вместе с этим может исследоваться техническое состояние и определяться гидродинамические параметры пластов.

Работа в данном случае основана на регистрации физических полей, которые определяются исходя из наличия и структуры потоков флюида в стволе буровой и около нее. В зависимости от назначения промыслово-геофизические исследования проводятся в добывающих и нагнетательных скважинах.

Исходя из этого, ставятся определенные задачи.

Так, промыслово-геофизические исследования в добывающих включают:

  • контроль технического состояния;
  • установление интервала поступления жидкости в скважину;
  • сопровождение ремонтных работ;
  • определение особенностей пластов;
  • установление оптимального режима работы скважины.

Очень часто в ряде случаев затруднено получения некоторых значений. При выборе правильного и комплексного исследования извлечь необходимые данные возможно по всем вышеперечисленным задачам.

ПГИ в нагнетательных буровых включает:

  • установление приемистости;
  • выделение интервала поглощения;
  • определение герметичности колонны;
  • установление интервала пластовых перетоков.

Для выполнения этих задач используются специальные геофизические приборы для исследования скважин. Оснащение производится с учетом установленных стандартов с применением инновационных технологий. Это обеспечивает максимальный результат проведения работ.

Исследования земной коры

Геофизические методы исследования земной коры называются совершенно по-разному.

Исследования земной коры представляют собой изучение физических полей:

  • гравитационного;
  • магнитного;
  • электрического;
  • упругих колебаний;
  • термического;
  • ядерных излучений.

Измерение их параметров производится на суше и на море, а также в воздухе и под землей. Полученные данные дают возможность определить структуру геологических пород.

Геофизические методы исследования грунтов включают следующие виды разведки:

  • гравиметрическую;
  • магнитную;
  • электрическую;
  • сейсморазведку;
  • геотермическую;
  • радиометрическую.

Эти методы дают возможность оценить состояние природной среды. Для выполнения работ используются как естественные, так искусственные поля.

Новые методы геофизических исследований скважин на международной выставке

Геофизические исследования в буровых скважинах с каждым днем набирают все больших оборотов. Поэтому становится актуальным проведение форумов, экспозиций, конгрессов и прочих мероприятий на международном уровне. Одним из таких является выставка «Нефтегаз». Она проводится ежегодно в стенах комплекса международного масштаба «Экспоцентр». Более 30 лет проект остается авторитетным событием на интернациональном уровне.

Читать еще:  Сварка медных и алюминиевых проводов своими руками

«Нефтегаз» является площадкой для развития бизнеса и обмена опытом между специалистами отрасли. Это непосредственно платформа для выработки решений, которая разработана профессионалами для профессионалов. На выставке представлены аэрокосмические и геофизические методы исследований, а также необходимое оснащение для их проведения и инновационные технологии.

Участие иностранных компаний является крайне важным, учитывая то, что отрасль нуждается во вливании средств. Здесь можно заключить выгодные контракты, найти спонсоров, а также продвинуть новую марку или бренд.

Непосредственно примут участие более тысячи экспонентов: элита из специалистов индустрии.

Традиционно это страны:

  • Китай;
  • Германия;
  • Иран;
  • Италия;
  • Канада;
  • Китай;
  • Франция;
  • Япония и др.

Устроители проекта учитывают при организации не только отечественные, но и зарубежные приоритетные направления развития нефтегазовой промышленности.

Принцип и методы геофизических методов исследования скважин

Геофизические методы исследования скважин (ГИС) – это совокупность физических способов анализа, которые применяются для получения информации о техническом состоянии скважин и грунтовых пород, в которых они расположены.

Комплексная портативная лаборатория для геофизического исследования скважин

Проведение подобных процедур актуально как во время ремонтных работ, так и для определения различных параметров выработки и породы вокруг нее.

1 Какое назначение геофизических исследований скважин?

Весь комплекс методов условно делится на две категории:

  • Каротаж (геофизика бурения) – используется для изучения горных пород, которые расположены в радиусе 1-2 метра от шахт нефтяных скважин
  • Геофизика скважин – иногда это понятие отождествляется с каротажем, но геофизический анализ является более обширным способом исследования, так как кроме пространства непосредственно около скважины, он охватывает и межскважинное пространство.

Геофизические исследования и работы в скважинах необходимы для того, чтобы получить исчерпывающую информацию о том, обладает ли разрабатываемая территория достаточным количеством полезных ископаемых, и будет ли обустройство нефтяных скважин экономически выгодным.

Можно выделить следующие задачи ГИС:

  • Литологическое расчленение и корреляция разрезов;
  • Определения наличия ресурсов;
  • Выяснение параметров исследований, которые необходимы для анализа их запасов;
  • Изучение гидрогеологических и инженерно-геологических особенностей скважин;
  • Определения технического состояния нефтяных скважин;
  • Контроль за процессом разработки месторождений ресурсов;
  • Определения особенностей проведения взрывных работ.

Пример полученного результата при геофизическом исследовании скважины

2 Методы исследования скважин

Поскольку задачи, стоящие перед геофизическими методами изучения скважин, достаточно обширны, и для их решения необходим всесторонний анализ особенностей разрабатываемых горизонтов. ГИС включает в себя большое количество достаточно разноплановых способов исследования. Все они, в зависимости от характера анализа, объединяются в несколько групп:

  • Электрические методы
  • Ядерно-геофизический метод
  • Газовый каротаж
  • Термокаротаж
  • Кавернометрия
  • Акустический каротаж

Всего существует свыше 50 методов ГИС. В этом материале мы будем знакомиться с основными методами, которые в условиях отечественной нефтедобывающей промышленности используются чаще всего.
к меню ↑

2.1 Электрические методы

Данная категория включает в себя способы исследования, которые базируются на измерении электрического поля пластов грунта, которое может возникать естественным путем, либо создаваться искусственно. Электрический каротаж является базовым способ анализа литологических показателей грунта, в котором находится шахта скважины, для контроля за её техническим состоянием, определения наличия нефтяных и рудных ресурсов и выяснения их параметров.

Электрический каротаж основывается на технологии определения различий электрических характеристик разных горных пород. Для анализа данных показателей необходимо выявить их поляризационную способность и величину электрического сопротивления.

Самые важные инструменты электрического каротажа:

Аппаратура для проведения геофизического исследования скважин

  • Замеры свойств естественного электрического поля;
  • Замеры свойств искусственного поля;
  • Анализ ЭМК (искусственное переменное эл-магнитное поле);

Для электро-ГИС используются специальные измерительные зонды, которые опускаются в шахту скважины и производят замеры электрического поля.

В зависимости от технологических особенностей применяемых зондов выделяют: электрически нефокусированный каротаж, и фокусированный каротаж.

ГИС нефокусированный каротаж также называют способом исследования кажущегося сопротивления. Для его осуществления используются специальные зонды с тремя электродами, при этом, один дополнительный электрон заземляется на верху, возле устья нефтяных скважин. Основной задачей такого анализа является поиск совпадений между стандартизированными параметрами грунта скважины и величиной тока, которую они излучают, и определенными в процессе исследованиями показателями.

После того как электрические свойства породы скважины изучены, используются методы математического и физического моделирования, которые позволяют прогнозировать характеристики будущей нефтедобывающей скважины.

Электрический ГИС фокусированными зондами также называется боковым каротажем. Такие зонды обладают направленной фокусировкой посылаемого тока, что позволяет получать более точные показатели замеров (без влияния на них свойств используемой промывочной жидкости, и осадков на стенах нефтяной скважины).

Диаграммы, полученные вследствие бокового каротажа, дают возможность определить градус наклона пласта, азимут угла падения, выявить литологические свойства породы, и определить свойства пластов-коллекторов.
к меню ↑

2.2 Ядерно-геофизические методы ГИС

Из всего разнообразия геофизического анализа скважин, именно ядерные методы исследования считаются наиболее перспективным направлением. Они дают возможность выполнять исследования в ситуациях, когда большинство других методов невозможно использовать.

Мобильная лаборатория для проведения ГИС

С помощью ядерного ГИС можно выявить следующие свойства породы:

  • Плотность;
  • Пористость;
  • Зольность углей;
  • Содержание водорода в грунте;

Ядерный каротаж нефтяных скважин делится на следующие способы анализа:

Гамма-каротаж. Данный способ используется для замера природного гамма излучения породы. Зонд, использующийся для получения показателей, оборудован детектором для снятия величины гамма-изучения. После того как он опущен на достаточную глубину внутрь скважины, зонд начинает ловить волны гама-квантов, которые преобразовываются в электрический импульс и передаются по кабелю на считывающее оборудование.

Главной особенностью такого способа является возможность выполнения анализа в закрытых стволах нефтяных скважин (внутри обсадной трубы), где невозможно использовать электрический каротаж. ГК является оптимальным способом выяснения глинистости грунта.

Гамма-гамма каротаж. ГГК применяется для анализа искусственной радиоактивности породы. Перед использованием специального каротажного зонда, скважину предварительно облучают гамма-волнами, после чего происходит регистрация ответных волн. Такой способ дает возможность зарегистрировать те виды излучения, которые не проявились бы без придания породе искусственной радиоактивности.

Нейтронный каротаж. Способ нейтронного каротажа также базируется на искусственном облучении грунта. Облучение выполняется нейтронными волнами, которые не существуют в природе в естественном виде.

Используемый зонд состоит не только из детектора для снятия показателей, но и из источника нейтронного излучения.

Оборудование для проведения ГИС

Ответная реакция породы на облучение может иметь два варианта: производство гамма-волн, либо первичного нейтронного потока. На основе данных показателей создаются диаграммы, с помощью которых можно составить картину о том, каким ресурсами обладает исследуемый горизонт, так как для разных видов полезных ископаемых характерны разные виды ответного излучения.
к меню ↑

2.3 Метод Газового каротажа

Данный метод ГИС позволяет выявить количество газов углеводорода, которыми насыщается глинистый раствор в процессе бурения скважин, вследствие чего определяются наиболее перспективные газоносные горизонты.

Для проведения газового каротажа используется специальное оборудование – газоанализаторы. Если в процессе бурения скважины производился отбор керна (горной породы), то газовый каротаж может быть проведен в лабораторных условиях посредством его анализа.

На точность газового каротажа очень влияют внешние факторы, такие как вид глинистого раствора и скорость его циркуляции, скорость бурения скважины, и остановки во время бурения.

Для точного ГК определять количество тяжелых углеводородов необходимо отдельно от остальных газов, так как именно тяжелые газы являются основной характеристикой нефтеносного горизонта.
к меню ↑

2.4 Метод Термокаротажа

Термокаротаж используется для определения технического состояния уже функционирующих нефтяных скважин. Для замера показателей используется специальный скважинный термометр, который опускается внутрь обсадной колонны.

С помощью термокаротажа можно выяснить целостность обсадной колонны, так как температура на поврежденных участках будет отличаться от общей температуры скважины, литологические особенности породы, определить песчаные и карбонатные пласты.

Процесс проведения геофизического исследования скважины

На сегодняшний день существует три наиболее распространенных способа термокаротажа:

  • Метод природного температурного поля;
  • Искусственного температурного поля;
  • Метод эффективности охлаждения.

Вся технология основывается на свойстве почвы проводить тепло, этот показатель (коэф. теплопроводности) отличается друг от друга у разных типов грунта.
У термокаротажа имеется один существенный недостаток, который несколько ограничивает возможности его применения для нефтяных скважин: из-за заполнения скважины жидкостью, тепловые свойства отличающихся пород грунта усредняются, что вносит трудности в определение разных видов грунта.
к меню ↑

2.5 Метод Кавернометрии

Данный способ геофизического исследования скважин базируется на измерении поперечного диаметра скважины, что позволяет определить её объем при цементировании, либо создании обсадной колонны, и выполнять мониторинг дефектов стенок нефтяных скважин, спровоцированных движением грунта.

В большинстве случаев поперечное сечение скважины редко обладает формой идеального круга, по этой причине за условный диаметр скважины берется размер площади сечения скважины плоскостью, которая перпендикулярна её оси.

Оборудования для выполнения таких исследований называются каверномерами. Такие устройства состоят из двух элементов: поверхностного оборудования для считывания данных, и опускаемого внутрь шахты прибора. Внутрискважинное устройство представляет собою конструкцию с четырьмя измерительными рычагами, которые размещены в двух перпендикулярных друг к другу плоскостях, и связаны с приводом переменного резистора.

Установка для проведения ГИС

Когда прибор двигается в середине скважины, рычаги соприкасаются с её стенками и меняют своё положение, в зависимости от этого на резистор подаются сигналы разной мощности, которые отслеживаются наружными устройствами.
к меню ↑

2.6 Метод акустического каротажа

Акустический каротаж анализирует время, которое требуется звуковому импульсу (упругим колебаниям), для прохождения грунта в околоскважинном пространстве. Поскольку каждая порода обладает своей плотностью, и, вследствие этого, разным сопротивлением, данный способ позволяет определить характеристики слоев грунта, в которых расположены нефтяные скважины.

Акустический каротаж используется для получения информации о техническом состоянии скважины, и в поиске месторождений ресурсов.

Оборудование для АК использует два диапазона частот: ультразвуковой (20-250 кГц) и звуковой (0.5-15 кГц). Для проведения исследований необходимо два устройства – измерительная аппаратура, и глубинный датчик, который укомплектован излучателем ультразвуковых волн, и приемником, имеющие свойство преобразовывать механическую энергию волн на частоте 20-50 кГц в электрический импульс.
к меню ↑

Геофизические исследования

Комплекс исследований должен включать все основные методы. Целесообразность применения дополнительных методов должна быть обоснована

Геофизические исследования в скважинах (geophysical exploration in wells) — методы, основанные на изучении естественных и искусственно создаваемых физических полей (электрических, акустических и тд), физических свойств горных пород, пластовых флюидов, содержания и состава различных газов в буровом растворе.

Применяются для изучения геологического разреза скважин и массива горных пород в околоскважинном и межскважинном пространствах, контроля технического состояния скважин и разработки нефтяных и газовых месторождений.

Первые геофизические исследования (термометрия) выполнены Д. Голубятниковым в 1908 г. на нефтяных промыслах г Баку.

В 1926 г. братьями Шлюмберже (Франция) был предложен электрический каротаж, высокая эффективность которого обеспечила его быстрое внедрение и развитие других методов геофизических исследований.

В СССР в разработку теории и техники геофизических исследований большой вклад внесли Л. Альпин, В. Дахнов и др, в США — Г. Арчи, Г. Гюйо, Дж. Долл и др.

Геофизические исследования, проводимые для изучения геологического разреза скважин, называют каротажем, который осуществляется электрическими, электромагнитными, магнитными, акустическими, радиоактивными (ядерно-геофизическими) и другими методами.

При каротаже с помощью приборов, спускаемых в скважину на каротажном кабеле, измеряются геофизические характеристики, зависящие от одного или совокупности физических свойств горных пород и их расположения в разрезе скважины.

В скважинные приборы входят каротажные зонды (устройства, содержащие источники и приемники наблюдаемого поля), сигналы которых по кабелю непрерывно или дискретно передаются на поверхность и регистрируются наземной аппаратурой в виде кривых (рис.) или массивов цифровых данных.

Разрабатываются способы каротажа, которые можно проводить в процессе бурения приборами, опускаемыми в скважину на бурильных трубах.

При электрическом каротаже изучают удельное электрическое сопротивление, диффузионно-адсорбционную и искусственно вызванную электрохимическую активность пород и т.п.

Для определения удельного сопротивления применяют боковое каротажное зондирование (измерения 3-электродными градиент-зондами разной длины), боковой каротаж (измерения зондами с фокусировкой тока), микрокаротаж и боковой микрокаротаж.

Различие в диффузионно-адсорбционной активности пород используется в каротаже самопроизвольной поляризации, а способность пород поляризоваться под действием электрического тока — в каротаже вызванной поляризации, основанном на различии потенциалов, возникающих на поверхности контактов руд (например, сульфидных), углей с другими горными породами.

При электромагнитном каротаже изучаются удельная электрическая проводимость (индукционный каротаж), магнитная восприимчивость (каротаж магнитной восприимчивости, КМВ) и диэлектрическая проницаемость (диэлектрический каротаж, ДК) горных пород индукционными зондами на различных частотах 1 кГц (КМВ), 100 кГц и 40 МГц (ДК).

При магнитном каротаже измеряются магнитная восприимчивость пород и характеристики магнитного поля.

Акустический каротаж основывается на регистрации интервальных времен (скорости), амплитуд и других параметров упругих волн ультразвукового и звукового диапазона.

При радиоактивном каротаже (ядерно-геофизическом) в скважинах измеряют характеристики ионизирующего излучения.

Широко используется изучение характеристик нейтронного и гамма-излучения, возникающих в породах при облучении их стационарным источником нейтронов (нейтрон-нейтронный каротаж и нейтронный гамма-каротаж) или источниками гамма-излучений (гамма-гамма-каротаж).

Модификации радиоактивного каротажа применяются с импульсными источниками нейтронов (импульсный нейтрон-нейтронный каротаж, импульсный нейтронный гамма-каротаж) и гамма-излучения (импульсный гамма-гамма-каротаж).

Читать еще:  Распространенные ошибки при обустройстве автономной канализации

Естественное гамма-излучение пород исследуется в гамма-каротаже.

В активационном радиоактивном каротаже изучаются характеристики излучения искусственных радиоактивных изотопов, возникающих в породах при облучении их источником ионизирующих излучений.

Ядерно-магнитный каротаж заключается в наблюдении за изменением электродвижущей силы, возникающей в катушке зонда в результате свободной прецессии протонов в импульсном магнитном поле.

Газовый каротаж обеспечивает изучение физическими методами содержания и состава углеводородных газов и битумов в буровом растворе, а также параметров, характеризующих режим бурения.

Иногда применяются исследования, основанные на определении механических свойств в процессе бурения (механический каротаж).

Околоскважинные и межскважинные исследования основаны на изучении в массивах горных пород особенностей естественных или искусственно созданных геофизических полей:

-магнитного (скважинная магниторазведка), гравитационного (скважинная гравиразведка), распространения радиоволн (радиоволновой метод, РВМ), упругих волн (акустическое просвечивание), постоянного или низкочастотного электрического (метод заряженного тела), нестационарного электромагнитного (метод переходных процессов);

— пьезоэлектрического эффекта, возникающего в горных породах под воздействием упругих колебаний (пьезоэлектрический метод);

— потенциалов вызванной поляризации, возникающих на контакте рудного тела в результате воздействия источника тока в скважине или на поверхности Земли (контактный метод поляризационных кривых) и др.

В радиоволновых методах разведки источник электромагнитных колебаний (частота 0,16-37 МГц) размещается в скважине; регистрация осуществляется с помощью приемников (антенн) в этой же скважине (околоскважинные исследования) или в соседней (межскважинные исследования).

В некоторых случаях поле наблюдается на поверхности Земли.

При разведке акустическим просвечиванием возбуждение и наблюдение волн осуществляется так же, как в РВМ.

В методе заряженного тела токовый электрод размещают в скважине против рудного тела; наблюдения производят в скважине или на поверхности.

Методы околоскважинных и межскважинных исследований позволяют обнаружить и оконтурить рудные тела и другие геологические образования, пересеченные скважиной или находящиеся в стороне от нее.

При контроле технического состояния скважин измеряют ее зенитный угол и азимут (инклинометрия), средний диаметр (кавернометрия) и расстояние от оси прибора до стенки скважины (профилеметрия), температуру (термометрия), удельное электрическое сопротивление бурового раствора (резистивиметрия), определяют высоты подъема цемента в затрубном пространстве скважины и его качество (контроль цементирования) по данным кривым акустического и гамма-гамма-каротажа и др.

При разработке месторождения регистрируют скорости перемещения жидкости по скважине (расходометрия), вязкость заполняющей жидкости (вискозиметрия), содержание воды в последней (влагометрия), давление по стволу (барометрия) и др.

Отбор проб флюидов из пласта (опробование пластов) производится опробователями пластов, которые на каротажном кабеле опускаются в скважину на заданную глубину.

После этого блок отбора (башмак) прижимается к стенке скважины и кумулятивной перфорацией создается дренажный канал между пластом и прибором для подачи флюида в приемный баллон прибора.

Образцы пород из стенок скважин отбирают стреляющими грунтоносами и сверлящими керноотборниками.

При анализе проб определяется содержание нефти, газа и воды, а также компонентный состав газа, что дает возможность оценить нефтегазоносность пласта, литологию, наличие углеводородов, а иногда и коэффициент пористости породы.

Геофизические исследования применяют при поисках и разведке нефти и газа (промысловая геофизика), угля (угольная скважинная геофизика), руд и строительных материалов (рудная скважинная геофизика) и воды (геофизические исследования гидрогеологических скважин).

Получаемые данные обеспечивают расчленение разреза скважин на пласты, определение их литологии и глубины залегания, выявление полезных ископаемых (нефти, газа, угля и др.), корреляцию разрезов скважин, оценку параметров пластов для подсчета запасов (эффективную мощность, содержание полезных ископаемых), определение объема залежи нефти, газа, угля или рудного тела, оценку физико-механических свойств пород при строительстве различных сооружений и др.

Геофизические исследования — основной способ геологической документации разрезов скважин, дающий большой экономический эффект за счет сокращения отбора керна и количества испытаний пластов.

Повышение эффективности геофизических исследований связано с разработкой и внедрением новых методов, а также с совершенствованием методики и техники исследований; внедрением машинных методов обработки и интерпретации данных, создания цифровых каротажных лабораторий, управляемых бортовым компьютером, комплексных геолого-геохимическо-геофизических информационно-измерительных и обрабатывающих комплексов, высокоточных и термобаростойких комплексных скважинных приборов и др.

Комплекс исследований должен включать все основные методы.

Целесообразность применения дополнительных методов должна быть обоснована промыслово-геофизическим предприятием.

Комплексы методов исследований уточняют в зависимости от конкретных геолого-технических условий по взаимно согласованному плану между геофизической и промыслово-геологичсской службами.

Заключения об интервалах негерметичности обсадной колонны, глубине установки оборудования, НКТ, положения забоя, динамического и статического уровней, интервале прихвата труб и привязке замеряемых параметров к разрезу, герметичности забоя выдаются непосредственно на скважине после завершения исследований, а по исследованиям, которые проводятся для определения интервалов заколонной циркуляции, распределения и состояния цементного камня за колонной, размеров нарушений колонны, — передаются по оперативной связи в течение 24 час после завершения измерений и через 48 час — в письменном виде.

В заключении геофизического предприятия приводятся результаты ранее проведенных исследований (в том числе и не связанных с КРС), а в случае их противоречия с данными предыдущих исследований, указываются причины.

Перед началом геофизических работ скважину заполняют жидкостью необходимой плотности до устья, а колонну шаблонируют до забоя.

Основная цель исследования — определение источников обводнения продукции скважины.

При выявлении источников обводнения продукции в действующих скважинах исследования включают измерения высокочувствительным термометром,
гидродинамическим и термокондуктивным расходомерами, влагомером, плотномером, резистивиметром, импульсным генератором нейтронов.

Комплекс исследований зависит от дебита жидкости и содержания воды в продукции.

Привязку замеряемых параметров по глубине осуществляют с помощью локатора муфт и ГК.

Для выделения обводнившегося пласта или пропластков, вскрытых перфорацией, и определения заводненной мощности коллектора при минерализации воды в продукции 100 г/л и более в качестве дополнительных работ проводят исследования импульсными нейтронными методами (ИНМ) как в эксплуатируемых, так и в остановленных скважинах.

В случаях обводнения неминерализованной водой эти задачи решаются ИНМ по изменениям до и после закачки в скважину минерализованной воды с концентрацией соли более 100 г/л.

Эти измерения проводятся в комплексе с исследованиями высокочувствительным термометром для определения интервалов поглощения закачанной воды и выделения интервалов заколонной циркуляции.

Измерения ИНМ входят в основной комплекс при исследовании пластов с подошвенной водой, частично вскрытых перфорацией, при минерализации воды в добываемой продукции более 100 г/л.

По результатам измерений судят о путях поступления воды к интервалу перфорации — подтягиванию подошвенной воды по прискважинной зоне коллектора или по заколонному пространству из-за негерметичности цементного кольца.

Оценку состояния выработки запасов и величины коэффициента остаточной нефтенасыщенности в пласте, вскрытом перфорацией, проверяют исследованиями ИНМ в процессе поочередной закачки в пласт двух водных растворов, различных по минерализации.

По результатам измерения параметра времени жизни тепловых нейтронов в пласте вычисляют значение коэффициента остаточной насыщенности. Технология работ предусматривает закачку 3-4 м 3 раствора на 1 м толщины коллектора.

Закачку раствора проводят отдельными порциями с замером параметра до стабилизации его величины.

Состояние насыщения коллекторов, представляющих объекты перехода на другие горизонты или приобщения пластов, оценивают по результатам геофизических исследований. При минерализации воды в продукции более 50 г/л проводят исследования ИНМ.

При переводе добывающей скважины под нагнетание обязательными являются исследования гидродинамическим расходомером и высокочувствительным термометром, которые позволяют выделить отдающие или принимающие интервалы и оценить степень герметичности заколонного пространства.

Геофизические исследования скважин

Геофизические исследования скважин (ГИС) или каротаж (от фр. «отбор керна»), термин введен братьями Шлюмберже, основателями одноименной нефтесервисной фирмы) — осуществляется для изучения физических свойств горных пород, вскрытых бурением, а также технического состояния скважины.

В отличие от методов наземной или скважинной геофизики, ГИС нацелены не на глубинность или дальность, а на разрешающую способность исследований. Поэтому в ГИС, хотя применяются в основном те же методы, что и в наземной геофизике, но модификации существенно отличаются.

ГИС имеют большое вспомогательное значение, как средство интерполяции свойств, изученных на керновом материале, но также и важное самостоятельное значение – физические свойства горных пород ГИС определяются представительнее: в месте их залегания в естественных условиях для значительных объемов. Поэтому ГИС играют роль опорного метода для наземных геофизических методов.

Техника ГИС включает (рис. 9.2) каротажную станцию на базе транспортного средства высокой проходимости, в которой находится приемно-измерительная аппаратура и спускоподъемное оборудование (лебедка с кабелем для передачи информации из скважины). Скважинный зонд (т. н. «снаряд») опускают на кабеле через направляющий блок, контролирующий также длину кабеля. При необходимости зонд конструктивно защищают от высокого давления и температуры в скважине.

В шахтных условиях и при решении инженерно-гидрогеологических задач используются переносные каротажные установки. В горизонтальных и восстающих скважинах средством доставки каротажных снарядов являются штанги.

В пенетрационной модификации ГИС упрочненные каротажные снаряды задавливают в грунт установкой, применяющейся для статического зондирования грунтов.

Получаемые из скважины данные обычно регистрируются в виде графика зависимости измеряемого геофизического параметра P от глубины скважины h -каротажной диаграммы.

Основные методы каротажа: электрический, термический, ядерно-физический, акустический, инклинометрия, кавернометрия, фото- и видео. В нефтегазовой отрасли применяется газовый каротаж и рациональный комплекс каротажа (промысловая геофизика).

Электрический каротаж – наиболее развитый и широко применяемый вид ГИС. Имеет следующие основные модификации:

Каротаж на постоянном токе – измеряют кажущееся удельное электрическое сопротивление (каротаж КС) и потенциалы спонтанной поляризации (каротаж ПС). Физические основы – дифференциация горных пород по удельному электрическому сопротивлению и самопроизвольно возникающим в скважине потенциалам электрохимических процессов.

Зонд КС состоит из трех электродов, располагаемых по оси скважины с фиксированными интервалами (двух сближенных и одного удаленного). Для поддержания электрической цепи используется еще один электрод, заземляемый на земной поверхности («бесконечность»). Два электрода подключают к источнику тока, два – к измерителю разности потенциалов, находящимся на поверхности, например – в каротажной станции.

В зависимости от решаемой задачи (определение границ напластований или истинных значений УЭС горных пород), используют те или иные комбинации подключения электродов.

Электрическая схема каротажной станции обеспечивает одновременное измерение потенциала ПС на одном из электродов зонда КС. Каротаж ПС позволяет наиболее простым способом определять границы горных пород, но в разной геологической обстановке критерии его интерпретации могут меняться.

Боковое каротажное зондирование (БКЗ) — последовательно применяют серию зондов КС различных размеров для определения зоны проникновения бурового раствора, что дает более полную информацию о свойствах горных пород (коллекторские свойства, нефтенасыщенность).

Каротаж ВП – изучают процесс искусственной поляризации горных пород в области спада. Эффективен при выявлении зон вкрапленности, сопровождающей сульфидное оруденение, пластов угля, определении водно-физических свойств горных пород.

Индукционный (ИК) и диэлектрический (ДЭК) каротаж – используют переменные электрические поля частотой 10…200 кГц и 10 мГц и более, соответственно. Вместо электродов применяются катушки индуктивности, поэтому измерения могут осуществляться в скважинах с высокоомным буровым раствором (на нефти) и в сухих скважинах.

ИК эффективен при изучении тонкослоистых разрезов и выявления высокоэлектропроводящих (рудных) подсечений; ДЭК – при определении водонаполненной пористости горных пород, независимо от минерализации воды: диэлектрическая проницаемость у воды — около 81 ед., у горных пород – 10 ед.

Акустический каротаж (АК) – основан на дифференциации упругих свойств горных пород в разрезах скважин, сохраняющейся с увеличением глубины в большей степени, чем в КС.

Зонд АК состоит обычно из излучателя и двух приемников ультразвуковых колебаний, разделенных поглощающим экраном, рабочая частота – 10…20 кГц, частота следования импульсов – 20…30 Гц. Измеряют интервальное время ΔТ прохождения ультразвуковых импульсов между приемниками на базе 0,4…1,0 м.

АК позволяет не только дифференцировать разрез скважины с высокой детальностью (до 10…20 см), но и помогает решать такие важные при бурении газо-нефтяных скважин задачи, как определение пористости, оценка насыщенности пластов водой или нефтью; кроме того он позволяет определять физико-механические свойства горных пород для инженерной геологии.

Радиоактивный каротаж (РК) – основан на измерении естественного и вызванного ядерного излучения. Важное преимущество РК – возможность измерения сквозь обсадные трубы.

В гамма-каротаже (ГК) – регистрируется естественное γ-излучение и определяется его интенсивность. Основные задачи – выявление радиоактивных пород в разрезе скважины и литолого-стратиграфическое расчленение осадочных толщ по содержанию глинистой фракции. Данные ГК хорошо коррелируются с каротажом ПС. Скважинный снаряд рассчитан на измерение как естественного, так и вызванного γ-излучения: имеет возможность присоединения источника радиоактивного излучения с разделительным (свинцовым) экраном.

В нейтронном гамма-каротаже (НГК) – измеряется интенсивность вызванного γ-излучения при облучении нейтронами от источника радиоактивного излучения. Выделяет водородосодержащие породы (водоносные, нефтеносные и глинистые). При сопоставлении ГК и НГК уверенно выделяются проницаемые породы среди глинистых.

В нейтрон-нейтронном каротаже (ННК) – регистрируется плотность тепловых нейтронов в среде, окружающей датчик; данные аналогичны НГК, но свободны от влияния естественного γ-излучения.

В гамма-нейтронном каротаже (ГНК) – облучают горные породы γ-излучением, а регистрируют нейтронное; обнаруживают бериллий и количественно оценивают его содержание.

Гамма- гамма каротаж (ГГК) – позволяет сравнивать плотность горных пород.

Методы контроля технического состояния скважин, используются также для интерпретации данных других видов каротажа.

Инклинометрия – определяет вертикальный угол и азимут наклона скважины: по отвесу и магнитной стрелке или гироскопом (в стальных обсадных трубах и в разрезах с ферромагнитными горными породами).

Читать еще:  Ливневая канализация: назначение, виды, устройство, расчет, заглубление и уклон, монтаж

Кавернометрия – определяет горизонтально сечение скважины по 3…4 радиусам рычажно-электрическим способом; позволяет уточнить разрез скважины (размыв в глинистых породах), получить данные для интерпретации БКЗ и НК, технические данные для процесса бурения.

Резистивиметрия или термометрия – определяют удельное электрическое сопротивление или температуру скважинной жидкости, что позволяет выявлять места притока в скважину воды (в т. ч. – по методике отартывания или продавливания) при решении промысловых и гидрогеологических задач.

Фото- и видеокаротаж – визуальное изучение стенок, забоя и технического состояния скважины.

Вопросы для самоконтроля

Какие возможности для геофизики предоставляет скважина?

Как подразделяются геофизические исследования с использованием скважины?

В каких вариантах осуществляется скважинная геофизика и какие основные методы в ней применяются?

Что такое каротаж, какие задачи он решает? Как осуществляются ГИС технически?

Какие основные методы включает электрический каротаж?

Что представляют собой зонды КС и ПС и как они подключаются? Что изучают этими методами?

Чем различаются ИК и ДЭК и чем они отличаются от КС?

На чем основан АК, как он осуществляется и какую информацию дает?

Какие методы включает РК и какую информацию они позволяют получить?

Какие методы используются для контроля технического состояния скважины?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

6. Назначение методов комплексного изучения геолого-геофизических характеристик нефтегазовых месторождений, их особенности и применение

Структурная схема взаимоотношений существующих ГИС, ГДИС и ГХИ — лабораторных методов рекомендована стандартом СТ ЕАГО 046-01 «Геофизические исследования и работы в скважинах. Геофизические исследования разрезов скважин. КАРОТАЖ. Термины, определения, буквенные обозначения, измеряемые физические величины». М.: ЕАГО. 1998 (рисунок 1). Все виды исследований ГИС, ГДИС и ГХИ носят комплексный характер.

6.1. Задачи комплексных методов исследования скважин

Методы комплексного изучения геолого-геофизических характеристик предназначены для решения следующих задач (независимо от типа скважин и стадии ее эксплуатации).

6.1.1. Уточнение геологической модели в зоне расположения скважины:

6.1.2. Контроль за выработкой пластов при извлечении нефти или газа:

6.1.3. Гидродинамический контроль фильтрационных свойств пласта:

6.1.4. Технологический контроль работы скважины:

6.1.5. Технический контроль состояния скважины:

6.1.6. Контроль качества работ по интенсификации добычи:

6.2. Геофизические методы

Исследование разрезов скважин в околоскважинном пространстве с целью уточнения геологической модели в зоне расположения скважины осуществляется с помощью геофизических исследований (ГИС-КАРОТАЖА). Различают несколько видов каротажа, основанные на измерении различных физических полей в скважине и околоскважинном пространстве: электрические методы каротажа — ПС, КС, БКЗ, БК, БМК и др.; электромагнитные методы каротажа — ИК, ДК, ВИКИЗ, КМВ и др.; радиоактивные методы — ГК, НК, ГГК, ИНК, ИНК — С/О и др., а также термокаротаж, акустический каротаж, наклонометрия. микрозондирование и т.д. Изложены особенности и стандартизированы 76 видов каротажа [102], 108 объектов исследований, 39 специальных коэффициентов, 101 измеряемый — определяемый параметр. В ГИС используются около 450 специальных терминов для характеристики ГИС-работ, геолого-технических исследований в процессе бурения, по вторичному вскрытию продуктивных пластов и интенсификацией притоков.

Рисунок 1. Виды геофизических исследований и работ в нефтяных и газовых скважинах по СТ ЕАГО-046-01.

Методы ГИС-каротажа являются косвенными. Одним из элементов их методических основ служат предварительно установленные аналитические петрофизические зависимости, получение регрессионных уравнений типа «керн-керн», «керн-геофизика», «геофизика-геофизика» и обоснование возможности перехода от геофизических характеристик к коллекторским свойствам пласта с последующей оценкой точности прогноза параметров.

Важнейшей составной частью геологической информации является массовый отбор кернов в процессе бурения и их детальные последующие лабораторные исследования. Параметры пласта по ГИС в основном характеризуют прискважинную зону.

Петрофизические зависимости представляют информацию о литологии, пористости, наличии углеводородов и насыщенности пласта жидкостями и др.

Геофизические исследования и работы в скважинах (ГИРС) обеспечивают информационную основу для контроля за выработкой пластов (замеры профилей притока и приемистости, оценка состава притока, насыщенности пласта флюидами в различные моменты, оценка параметров вытеснения и др.), технического контроля работы скважин и ее технического состояния, контроль проведения методов интенсификации.

6.3. Гидродинамические методы исследования скважин

ГДИС — гидродинамический мониторинг свойств пласта — предназначен для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скин-факторе, трассировки границ пласта и особенностях зон дренирования, типа пласта-коллектора, анизотропии пласта по проницаемости, режима залежи и др.

Различают ГДИС на (квази) установившихся режимах фильтрации — метод снятия индикаторных диаграмм (ИД) и на неустановившихся режимах (КПД-КВД в эксплуатационных и нагнетательных скважинах, КВУ, гидропрослушивание, импульсные методы, экспресс-методы, например, с помощью пластоиспытателей, одновременное исследование групп скважин, исследования скважин без остановок и др.). Существуют несколько десятков методов обработки данных измерений на теоретической основе линейной теории упругого режима фильтрации, при интерпретации используются до сотни теоретических моделей пластовых фильтрационных систем (основанных на различных дифференциальных уравнениях фильтрации: многофазных систем, с двойной пористостью и проницаемостью и т.д.), используются десятки компьютерных программ.

В существующих отечественных руководствах по ГДИС (последнее издано в 1991 г. и инструкциях (изданных в 1982-85 гг.)) под ГДИС понимаются и излагаются, в основном, методы обработки наиболее известных и широко распространенных ГДИС на базе представлений только о плоско-радиальной фильтрации к вертикальным скважинам с целью определения параметров пласта. Это, так называемые, традиционные методы (например, это методы обработки КВД-КПД без учета притока Хорнера, с учетом притока и др.). Они характеризуются тем, что исследования проводились с помощью, так называемых, механических глубинных манометров (пружинных, поршневых, геликсных), с ограниченным временем регистрации (до нескольких часов или суток), с ограниченным количеством дискретных точек (от нескольких до нескольких десятков), допускали возможность ручной расшифровки (на компараторе) и ручной обработки (построение соответствующих графиков-анаморфоз).

Эти традиционные методы были основаны на использовании при анализе скорости изменения забойных давлений во времени и позволяли определить-оценить 2 параметра. В отличие от традиционных, современные методы ГДИС на неустановившихся режимах фильтрации регистрируются с помощью разработанных в последние годы высокоточных глубинных электронных манометров с пьезокварцевыми датчиками давления и глубинных комплексов приборов с соответствующим компьютерным обеспечением (цифровыми методами регистрируются от 10000 до 500000 точек в течение от 10 до 500 суток), с чувствительностью, позволяющей использовать при анализе данных ГДИС темпы изменения давления, производные давления. Это резко улучшает качество интерпретации и количество определяемых параметров продуктивных пластов. Использование 4-х функций, вместо 2-х в традиционных методах, позволяет оценить-определить до 4 параметров и более (горизонтальную и вертикальную проницаемости – Кг, Кв, скин-фактор, структуру фильтрационного потока, пластовое давление — Рпл и др.). Однако при этом повышаются требования к инженерно-техническому персоналу. Исследования тщательно планируются с соответствующими расчетами. Расшифровка и обработка промысловых данных возможна только с применением вспомогательных компьютерных технологий, интерпретацию — окончательный выбор из множества возможных моделей — должен делать инженер-интерпретатор на базе глубоких знаний физических и теоретических основ ГДИС и комплексном использовании всей геолого-геофизической информации и сведений по разработке залежей и эксплуатации скважин. Эти современные методы ГДИС требуют больших затрат, чем традиционные.

Современные методы обработки данных ГДИС являются наиболее информативными, т.к. охватывают весь длительный по времени диапазон различных периодов регистрации процессов изменения давления (характеризующие) — отражающие влияние условий на внутренней границе пласта — немгновенность открытия-закрытия скважины, скин-фактор и послеэксплуатационный приток-отток — I начальный участок; II участок — влияние параметров пласта — коэффициентов гидропроводности и пьезопроводности; III участок — отражающий условия на внешней границе пласта — пласт «закрытый», «открытый», «бесконечный» и др., т.е. наиболее полно могут дать представление о модели пластовой фильтрационной системы (МПФС). Другие группы методов являются менее информативными и могут рассматриваться как вспомогательные.

Гидропрослушивание скважин

Метод позволяет оценивать гидродинамическую связь между скважинами по пласту, выявлять непроницаемые границы, определять средние значения гидропроводности и пьезопроводности пласта между исследуемыми скважинами и оценивать степень участия матрицы трещиновато-пористого коллектора в разработке.

Методы ГДИС являются косвенными методами определения параметров пласта. Их теоретической и методической основой служат решения, так называемых, прямых и обратных задач подземной гидромеханики, которые не всегда имеют однозначное решение. Поэтому интерпретация данных ГДИС носит комплексный характер с использованием результатов ГИС, лабораторных и геолого-промысловых исследований.

По данным ГДИС, фильтрационные параметры пласта характеризуют средневзвешенные параметры в области дренажа скважин и между скважинами — средневзвешенную гидропроводность, пластовые давления, скин-фактор скважин и др.

Опробование и испытание пластов с помощью трубных пластоиспытателей или спускаемых на кабеле, отбор и лабораторные исследования пластовых флюидов и кернов служат для оценки пористости, проницаемости, насыщенностей кернов, оценки параметров вытеснения, анизотропии пласта по проницаемости и др.

6.4. Геохимические методы исследований

Геохимические методы исследований позволяют разделять суммарную добычу из скважин, совместно вскрывающих единой сеткой несколько пластов, для любых способов эксплуатации скважин, изучать процессы обводнения, солеобразования и гидратообразования, коррозии, образования эмульсий и т.д.

6.4.1. Метод фотоколориметрии

По изменению коэффициента светопоглощения нефти во времени можно судить о подключении к работе в данной скважине новых пластов вследствие изменения режима эксплуатации скважины, изменения условий закачки воды, гидроразрыва пластов, дострела новых пачек продуктивных пород и т.д.

Если точно установлены закономерности изменения коэффициента светопоглощения по площади залежи и по вертикали от пласта к пласту, то его систематические измерения позволяют судить о направлении перемещения нефти в пластах. При совместной добыче нефти из двух пластов, для которых известны и резко отличаются величины коэффициента светопоглощения, зная общий коэффициент светопоглощения добываемой нефти из этих пластов не трудно рассчитать относительные дебиты каждого пласта. Наиболее эффективно применение метода фотоколориметрии нефти в комплексе с другими методами, характеризующими работу пластов в скважинах.

6.4.2. Определение в нефти содержания микрокомпонентов металлов

Метод, основанный на использовании различия добываемых нефтей разных пластов по содержанию микрокомпонентов металлов: ванадия, кобальта, никеля применяется для контроля за процессом разработки.

Данный метод позволяет решать следующие задачи:

6.4.3. Изучение солевого состава добываемых вод

Метод основан на использовании различия солевого состава добываемых вод и позволяет решать следующие задачи:

6.5. Особенности параметров пласта, определенных по данным различных методов исследований, и их использование

Особенности комплексных методов ГИС, ГДИС и лабораторных ГХИ-методов (прямые и косвенные методы, основанные на различных физических принципах, теоретических и методических основах, характеризующие различные зоны пласта, масштабы осреднения и др.), их условные оценки, исходя из зарубежного опыта, представлены в таблице 1, а методика использования данных этих исследований — для создания модели пласта на рисунке 2.

Таблица 1. Основные методы получения информации о параметрах пласта и процессах разработки, их качество и этапности выполнения

(World Oil, Nov. 1978. Timmerman, 1982, Thakur G. C. & Satter A. 1998)

Рисунок 2. Источники информации о параметрах пласта и их использовании.

Рассматривая комплекс информации о пласте по данным геологии, геофизики, PVT и ГДИС как взаимосвязанным элементам единой системы, можно составить представления о пласте (модели пласта) и модели пластовой фильтрационной системы (МПФС). МПФС — это систематизированная и формализованная разнородная исходная информация о продуктивном пласте в виде геологических карт, профилей, описаний кернов, данных различных геофизических и гидродинамических исследований скважин, экспериментальных зависимостей физических свойств пласта, пласта-коллектора и пластовых флюидов от давления (по данным PVT), таблиц и графиков, уравнений и формул, безразмерных зависимостей, описывающих поведение модели пласта (рисунок 2).

МПФС является аналогом одной из завершающих стадий создания компьютерных ПДГТМ [5, 77] и является комплексным динамическим понятием, которое постоянно уточняется по мере бурения новых скважин и получения новой информации о процессах разработки залежи. Таким образом, целью комплексных ГИС, ГДИС и ГХИ является получение информации о динамических фильтрационных характеристиках пласта для создания детерминированной МПФС, адекватной реальному пласту — ПДГТМ.

Степень достоверности исходных данных для построения ПДГТМ зависит от количества контрольных точек, в которых получена информация о пласте [5]. Так, точность данных по результатам промысловых ГДИС и испытаний — гидропроводность, пьезопроводность, скин-фактор (при охвате объема пласта исследованиями от 33 до 100%) — оценивается как достаточно достоверная и приемлемая погрешность оценивается в интервале 10-20%.

Точность некоторых данных, определяемых при лабораторных исследованиях, оценивается, например, следующими погрешностями: вязкости пластовых флюидов — 2-3%, фазового равновесия — 10%, относительных фазовых проницаемостей и капиллярных давлений — 10%. Их интегральная погрешность оценивается в 10-20%.

Объем части пласта, из которой отбирается керновый материал, подвергаемый лабораторным исследованиям, находится в диапазоне 0.00004 до 0.00016%, а по геофизическим данным от 0.022 до 0.088% от объема пласта. Все данные имеют различные погрешности в диапазоне от 5 до 20%, поэтому интегральную погрешность данных, полученных из геолого-математической модели, можно оценить в 20% (приемлемая погрешность определения балансовых запасов углеводородов).

В итоге общая интегральная погрешность входных данных для построения фильтрационной модели должна составлять не менее 15-20% [5].

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector