T-w-f.ru

Ремонт от TWF
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Справочник | Лесоматериалы | Деревянное строительство

Справочник | Лесоматериалы | Деревянное строительство

Вы здесь

Физические свойства древесины

К физическим свойствам древесины относятся цвет, блеск, запах и текстура.

Цвет древесины обусловлен климатом, составом почвы, возрастом дерева, его породой и т. д. Цвет древесине придают находящиеся в ней дубильные, красящие, смолистые вещества и окислы этих веществ.

Блеск древесины — это способность отражать световой поток с поверхности в определенном направлении. Блеск зависит от плотности древесины, количества, размеров и расположения сердцевинных лучей. Светлая и более плотная древесина обладает большим блеском, что придает текстуре древесины особую красоту.

Запах древесины зависит от количества эфирных масел, смол и дубильных веществ. Древесина только что срубленного дерева или сразу после ее механической обработки обладает сильным запахом, у хвойных пород более сильный запах, чем у древесины лиственных пород.

Текстура древесины — это естественный рисунок древесных волокон на обработанной поверхности, обусловленный особенностями ее строения (рис. 1). Текстура зависит от расположения древесных волокон на разрезе ствола, видимости годовых слоев, цветовой гаммы древесины, количества и размеров сердцевинных лучей. Декоративные породы: орех, красное дерево, дуб обладают красивыми текстурой и цветом, а также блеском.

Рис. 1. Текстура древесины сосны на трех разрезах: а — на поперечном; б — радиальном; в — тангенциальном

Красивую текстуру имеет свилеватая древесина карельской березы. Красивую текстуру получают из дубовых кряжей, распиливая их в радиальном или тангенциальном направлении для получения ножевой фанеры или текстурной дощечки. У бука, клена, дуба выразительная текстура при радиальном разрезе, у хвойных пород — при тангенциальном разрезе.

По цвету, блеску и текстуре определяют породу древесины. Плотность древесины — это отношение её массы к объему, измеряемой в г/см3 или кг/м3. Плотность зависит от влажности, породы, возраста и условий роста древесины. Различают относительную и абсолютную плотность древесины, определяемую в лабораторных условиях.

Объёмная масса древесины — один из показателей ее качества и механических свойств. Объемную массу пород древесины сравнивают между собой на образцах влажностью 15 % (стандартная влажность). Древесину по объёмной массе делят на группы:

  • очень лёгкая (0,45 г/см3);
  • лёгкая (0,45 — 0,60 г/см3);
  • среднетяжёлая (0,61 — 0,75 г/см3);
  • тяжёлая (0,76 — 0,90 г/см3);
  • очень тяжёлая древесина (более 0,90 г/см3).

Полную насыщенность древесины водой называют границей гигроскопичности. Такая стадия влажности в зависимости от породы дерева составляет 25 — 35%.

Древесину, полученную после сушки при температуре 105 °С с полным выделением всей гигроскопической влаги, называют абсолютно сухой древесиной.

На практике различают древесину: комнатно-сухую (с влажностью 8 — 12%), воздушно-сухую искусственной сушки (12 — 18%), атмосферно-сухую древесину (18 — 23%) и влажную (влажность превышает 23 %).

Средняя объёмная масса древесины различных пород

Древесная породаСредняя объемная масса, г/см 3
для древесины с влажностью 15 %для свежесрубленной ревесины
Дуб0,721,03
Ясень0,710,92
Клен0,700,86
Лиственница0,680,84
Бук0,650,95
Береза0,640,88
Орех0,600,84
Сосна0,520,86
Липа0,510,79
Осина0.500,76
Ель0,460,79
Пихта0,390,83

Древесину только что срубленного дерева или находившуюся долгое время в воде, называют мокрой, ее влажность до 200 %. Различают также эксплуатационную влажность, соответствующую равновесной влажности древесины в конкретных условиях.

Усушка древесины — это уменьшение её объёмных размеров при сушке в результате испарения гигроскопической влажности. Усушка (рис. 2) в тангенциальном направлении составляет 6 — 12 % (на 1 м), в радиальном — 3 — 6%, а вдоль волокон — около 0,1 %, т. е. 1 мм на 1 м, что обычно не учитывается.

Неравномерная усушка древесины по различным направлениям вызывает деформации и дефекты деревянных деталей и конструкций.

Разбухание древесины — это увеличение размеров и объема при насыщенности ее водой до границы гигроскопичности. Разбухание, как и усушка, неодинаково в различных направлениях.

Из-за усушки и разбухания деревянные конструкции деформируются и могут стать полностью непригодными. Вот почему деревянные конструкции изготовляют из стандартно-сухой древесины.

Коробление древесины — результат неравномерной усушки, вызывающий внутренние напряжения и трещины. Усушка досок в наружных слоях больше, чем во внутренних, что вызывает коробление. Доски из сердцевинной части ствола менее подвержены короблению. Коробление граней пиломатериалов в зависимости от места нахождения в стволе показано на рис. 3. Для предупреждения коробления влажность в момент изготовления изделий должна соответствовать эксплуатационной влажности. При этом соблюдают конструктивные требования: столярные плиты склеивают из узких реек, уложенных с различно или взаимно перпендикулярно направленными волокнами древесины. Рейки не только склеивают, но и закрепляют рамой или наконечниками.

Рис. 2. Усушка древесины в различных частях ствола.

Рис. 3. Усушка и коробление граней: I — грани древесины, не подвергавшиеся сушке; II — грани высушенной древесины; а, б, в, г — схемы усушки граней древесины в зависимости от их места в стволе.

Теплопроводность — это способность толщи древесины проводить тепло от одной поверхности к противоположной. Для древесины характерен низкий коэффициент теплопроводности древесины 0,17 — 0,31 Вт/ (м*°С), зависящий от породы, плотности, влажности и направления разреза. Сухая древесина плохой проводник тепла. Звукопроводность — это способность древесины проводить звук. Звукопроводность древесины вдоль волокон больше звукопроводности воздуха в 16 раз, а поперек волокон — в 3 — 4 раза. Качество древесины определяется звукопроводностью. После удара по комлевой части растущего или срубленного ствола хорошее распространение звука свидетельствует о качестве древесины. Прерывистый звук, переходящий в глухой, свидетельствует о загнивании древесины.

Электропроводность сухой древесины незначительна. Это позволяет использовать древесину в качестве электроизоляционного материала. Электропроводность используют для определения влажности древесины.

Коррозионная стойкость древесины — это ее способность сопротивляться действию агрессивной среды. Древесина не подвержена воздействию слабых растворов щелочей, солей, различных органических и минеральных кислот. Хвойные породы более стойки к коррозии, чем лиственные породы.

Теплопроводность, звукопроводность, электропроводность древесины

Теплопроводностью древесины называется ее способность проводить тепло через свою толщу от одной поверхности к другой. Теплопроводность сухой древесины незначительна, что объясняется пористостью ее строения. Коэффи­циент теплопроводности древесины равен 0,1—0,35 ккал/м . град . ч. Полости, межклеточные и внутриклеточные пространства в сухой древесине заполнены воздухом, который является плохим проводником тепла. Благодаря низкой теплопроводности древесина получила широкое распространение как стеновой материал.

Плотная древесина проводит тепло несколько лучше рыхлой, влажность древесины повышает ее теплопроводность, так как вода по сравнению с воздухом является лучшим проводником тепла. Кроме того, теплопроводность древесины зависит от направления ее волокон и породы. Например, теплопроводность древесины вдоль волокон примерно вдвое больше, чем поперек.

Звукопроводностью называется свойство материала проводить звук; она характеризуется скоростью распространения звука в материале. В древесине быстрее всего звук распространяется вдоль волокон, медленнее в радиальном и очень медленно в тангентальном направлениях. Звукопроводность древесины в продольном направлении в 16 раз, а в поперечном в 3—4 раза больше звукопро­водности воздуха. Это отрицательное свойство древесины требует при устройстве деревянных перегородок, полов и потолков применения звукоизоли­рующих материалов. Звукопроводность древесины и ее способность резониро­вать (усиливать звук без искажения тона) широко используются при изготовлении музыкальных инструментов. Повышенная влажность древесины понижает ее звукопроводность.

Наилучшей древесиной для изготовления музыкальных инструментов является древесина ели, пихты кавказской и сибирского кедра.

Электропроводность древесины характеризуется ее сопротивлением прохождению электрического тока. Электропроводность древесины зависит от юроды, темпештуры, направления волокон и ее влажности. Электропро­водность сухой древесины незначительна. Это позволяет применять ее в качестве изоляционного материала. При увеличении влажности в диапазоне от 0 до 30% электрическое сопротивление падает в миллионы раз, а при увеличении влажности свыше 30%— в десятки раз. Электрическое сопротивление древеси­ны вдоль волокон меньше в несколько раз, чем поперек волокон. Повышение те­мпературы древесины приводит к уменьшению ее сопротивления примерно в 2 раза.

Механические свойства древесины

Общие понятия о механических свойствах и испытаниях древесины

Механические свойства характеризуют способность древесины сопро­тивляться воздействию внешних сил (нагрузок). По характеру действия сил различают нагрузки статические, динамические, вибрационные и долговре­менные. Статическими называют нагрузки, возрастающие медленно и плавно. Динамические, или ударные, нагрузки действуют на тело мгновенно и в полную силу. Вибрационными называют нагрузки, у которых меняются и величина, и направление. Долговременные нагрузки действуют в течение очень продолжи­тельного времени.

Под воздействием внешних сил в древесине нарушается связь между отдель­ными ее частицами и изменяется форма. Из-за сопротивления древесины внешним нагрузкам в древесине возникают внутренние силы; если эти силы отнести к единице площади сечения (1 см 2 ), то получим напряжение. Напряжение выражается в килограммах на квадратный сантиметр (кгс/см 2 ).

Деформацией называется изменение формы и размеров древесины под действием внешних сил. Деформации, исчезающие после прекращения действия силы, называются упругими, а сохраняющиеся после снятия нагрузки — остаточными.

К механическим свойствам древесины относятся прочность, твердость, деформативность, ударная вязкость.

Прочность древесины

Прочностью называется способность материала сопротивляться разруше­нию под действием нагрузки. Прочность древесины зависит от направления действующей нагрузки, породы дерева, плотности, влажности, наличия пороков.

Предел прочности древесины определяют на небольших, не имеющих пороков образцах в лабораториях. Методы испытания, а также формы и размеры испытываемых образцов установлены ГОСТами.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении связанной влаги прочность древесины уменьшается (особенно при влажности 20—25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины.

Кроме влажности, на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок. Поэтому при проведении испытаний древесины придерживаются заданной скорости нагруже­ния на каждый вид испытания.

Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание.

Предел прочности при растяжении.Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см 2 . На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположе­ния волокон вызывает снижение прочности.

Прочность древесины при растяжении поперек волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, т. е. 65 кгс/см 2 . Поэтому древесина почти не применяется в деталях, работающих на растяжение поперек волокон. Прочность древесины поперек волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Предел прочности при сжатии.Различают сжатие вдоль и поперек волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах и образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в тве­рдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см 2 .

Прочность древесины при сжатии поперек волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперек волокон не всегда можно точно устано­вить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперек волокон в радиальном и тангентальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангентальном; у хвойных, наоборот прочность выше при тангентальном сжатии.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжения сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон.

Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см 2 , т. е. в 2 раза больше предела прочности при сжатии вдоль волокон.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперек волокон и перерезание.

Читать еще:  Чем утеплять стены изнутри дома выбираем лучший утеплитель

Прочность при скапывании вдоль волокон составляет 1 /5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), скалывание по тангентальной плоскости на 10—30% выше, чем по радиальной.

Предел прочности при скалывании поперек волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперек волокон в четыре раза выше прочности при скалывании вдоль волокон.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Физические свойства древесины

Испытания, которые не приводят к изменению химического состава древесины, выявляют ее физические свойства. К физическим относят следующие свойства древесины. Физические свойства древесины:

  • Внешний вид
  • Влажность
  • Усушка
  • Коробление
  • Влагопоглощение
  • Разбухание
  • Водопоглощение
  • Плотность
  • Проницаемость
  • Тепловые свойства
  • Звукопроводность
  • Электропроводность
  • Электрическая прочность
  • Диэлектрические свойства
  • Свойства, проявляющиеся под воздействием электромагнитных излучений

Рассмотрим каждое из физических свойств древесины более подробно.

Внешний вид древесины

К внешнему виду, в разрезе физических свойств древесины относят следующие:

  • Цвет древесины, одна из важнейших характеристик внешнего вида. Для некоторых пород древесины, цвет настолько характерен, что может быть признаком для распознавания. Цвет может быть различным, в зависимости от породы дерева, климата, где оно выросло, а также его возраста. Различная древесина, под воздействием воздуха, света, поражения грибами, длительном пребывании в воде, может значительно изменять свой цвет от первоначального, который был сразу после спила дерева.
  • Блеск это способность поверхности древесины, отражать поток света. Из самых используемых пород древесины, в России, самыми «блестящими» породами являются: дуб, бук, белая акация, бархатное дерево
  • К текстуре и макроструктуре относят рисунок, который образуется вследствие перерезания сердцевинных лучей, сосудов и годичных слоев, на поверхности древесины. Оценка качества по внешнему виду происходит по ширине годичных слоев и содержания поздней древесины

Влажность древесины

Отношение массы воды, содержащейся в древесине к массе сухой древесины является физическим показателем влажности древесины. Влажность древесины вычисляют прямым и косвенным методами.

К косвенному методу относится измерение кондуктометрическим электровлагомером, который определяет электропроводность древесины. Использование косвенного метода экономит время, но его показания могут иметь погрешность до 30%.

Прямые методы занимают значительно больше времени для измерения влажности. Суть прямых методов заключается на выделении тем или иным образом воды из древесины, при высушивании, например.

Вода, содержащаяся в древесине различают по двум типам — связанную, находящуюся в клеточных стенках и свободную, находящуюся в полостях клеток и межклеточных пространствах. Свободная вода удаляется легче, чем связанная.

Поры древесины

Показатель нормализованной влажности составляет 12%, если нет примечаний.

Физические свойства древесины. По степени влажности различают

  • Мокрую древесину, которая долго находилась под водой (100%)
  • Свежесрубленную древесину, которая имеет влажность растущего дерева (50-100%)
  • Воздушно-сухую древесину, которая сохла на открытом воздухе (15-20%)
  • Комнатно-сухую, которая длительное время находилась в отапливаемом помещении (8-12%)
  • Абсолютно сухую, которая была высушена в специальных камерах, с температурой 103+-2 градуса по Цельсию.

Усушка древесины

При удалении связанной воды происходит уменьшение объема древесины и линейных размеров. Это свойство и называют усушка. Усушки не вызывает удаление свободной воды. Большее количество клеточных стенок на единицу объема древесины, способствует более сильной усушке.

  • Усушку древесины необходимо учитывать при распиловке бревен на доски, так называемые припуски на усадку. Например, при сушке пиломатериалов и т. д.
  • Усушка, в разных направлениях неодинакова. Так, в радиальном направлении усушка меньше в 1,5-2 раза, чем в тангенциальном.
  • Максимальная усушка происходит при удалении всего количества связанной воды.

Усадка древесины

Без участия внешних нагрузок, в древесине возникает внутреннее напряжение, которое образуется при неодинаковых изменениях объема древесины.

В поверхностных зонах доски влажность ниже, чем в центре. Поэтому из-за того что свободная сушка стеснена, возникают напряжения «растягивающие». При этом внутри доски возникают сжимающие напряжения.

Если будет достигнут предел прочности на растяжение поперек волокон, растягивающего напряжения, на древесине появятся трещины. Внутренние и поверхностные.

Коробление древесины

Коробление древесины различают поперечную и продольную. Под термином «коробление» понимают изменение формы пиломатериалов.

Коробление может происходить при выпиловке, неправильном хранении, при несимметричном строгании,ребровом делении из-за нарушения равновесия остаточных направлений. Чаще всего при сушке. Из-за усушки по разным структурным направлениям.

Покоробленность делят на два вида: продольная (по кромке, по пласти и крыловатость) и поперечная

Покоробленности древесины

Влагопоглощение древесины

Влагопоглощение из окружающего воздуха древесиной не зависит от породы. Способность к влагопоглощению это отрицательная характеристика древесины. Поэтому изделия и постройки из дерева покрывают различными пленочными и лакокрасочными материалами.

Увлажненная древесина становится хуже, ухудшаются ее механические характеристики и биостойкость.

Разбухание древесины

При повышении в древесине связанной воды происходит изменение объема и линейных размеров, которое происходит при нахождении древесины в воде или на влажном воздухе.

Поперек волокон древесина разбухает больше, чем вдоль волокон. Разбухание, в целом, отрицательное свойство, но полезно для обеспечения плотности соединений элементов, например в бочках, судах.

Водопоглощение древесины

Древесина способна увеличивать свою естественную влажность при непосредственном контакте с водой. Количество свободной воды зависит от объема полостей. Чем больше плотность древесины, тем меньше ее влажность и тем больше у нее водопоглощение.

Для получения целлюлозы и при пропитке древесины растворами антисептиков и протрав, способность поглощать влагу является важным и весьма полезным.

Бумажная фабрика

Плотность древесины

Плотность древесины выражается в кг/м3 или г/см, характеризуется массой единицы объема материала.

Для оценки качества сырья в деревообработке, основным показателем плотности является базисная плотность. Базисная плотность выражается отношением массы абсолютно сухого образца к его объему при влажности, равной или выше предела насыщения стенок клеток древесины.

По плотности древесину разделяют на три группы (при 12 процентной влажности):

  • Малая (менее 540 кг/м3)
  • Средняя (550-740 кг/м3)
  • Высокая (более 740 кг/м3)

Проницаемость древесины

Степень проницаемости определяют, выявляя способность древесины пропускать газы или жидкости под давлением

Тепловые свойства древесины

Тепловые свойства древесины складываются из трех показателей:

  • Теплоемкость удельная это количество теплоты, необходимое для нагревания одного килограмма древесины на один градус. Это показатель способности древесины аккумулировать тепло.
  • Теплопроводность характеризует свойство, которая определяет интенсивность переноса тепла в древесине.
  • Тепловое расширение-это увеличение объема и линейных размеров древесины при нагревании

Звукопроводность древесины

Скорость распространения звука в древесине определяет ее звукопроводность. Самая низкая звукопроводность в тангентальном направлении волокон. Самая высокая звукопроводность у древесины наблюдается вдоль волокон, средняя – в радиальном направлении.

В 16 раз звукопроводность древесины в продольном направлении превышает звукопроводность воздуха. В поперечном в 4 раза. Это свойство называют резонированием звука. Используется при изготовлении музыкальных инструментов

Электропроводность древесины

Способность древесины проводить электрический ток. Эта способность древесины находится в обратной зависимости от электрического сопротивления.

Сухую древесину относят к диэлектрикам. Сопротивление уменьшается с повышением влажности древесины.

В десятки миллионов раз снижается сопротивление при увеличении связанной воды в древесине.

Диэлектрические свойства древесины

Диэлектрические свойства характеризуют поведение древесины в переменном электрическом поле.

Диэлектрическая проницаемость равна отношению емкости конденсатора с прокладкой из древесины к емкости конденсатора с воздушным зазором между электродами

Под действием механических усилий на поверхности древесины возникают электрические заряды проявляются пьезоэлектрические свойства древесины.

Теплоемкость, теплопроводность, электропроводность древесины

Благодаря государственной поддержке, в стране возрождается деревянное домостроение. В 33 российских регионах действует программа «Деревянный город», по этой программе около 30% малоэтажных домов возводиться из дерева. Планируется, что к 2020 объемы строительства такого жилья будут доведены до 2.8 млн квадратных метров в год. Лесоматериал практичен и удобен в применении, 75% загородных и садовых домов построены из оцилиндрованного дерева и бруса.

Конъюнктура рынка предъявляет к стройматериалам новые требования, помимо надежности и долговечности, в число современных приоритетов вошли экологичность и энергосбережение. В полной мере этим требованиям соответствует древесина – тепловое сопротивление стен из деревянного бруса выше, чем у кирпича и бетона.

В общем случае под теплопроводностью понимают свойства различных материалов переносить тепловую энергию, этот свойство определяет качество теплоизоляции домов. Правильный выбор стройматериала для постройки дома позволит отказаться от утепления наружных стен, обеспечит сохранение тепла зимой и поддержание прохладного микроклимата летом.

Применение стройматериала с высоким сопротивлением теплопередачи экономит ресурсы на обогреве и кондиционировании помещений.

Теплоемкость

Способность поглощать тепло называется теплоемкостью и характеризуется удельной теплоемкостью.

Теплоемкость абсолютно сухой древесины почти не зависит от породы и в пределах температуры от 0 до 160° в среднем равна 0.327, т. е. в три раза меньше, чем для воды (Dunlap).

Колебания удельной теплоемкости для разных пород не выходят из пределов = 3°0. Большое влияние на теплоемкость оказывает ее влажность; во влажной древесине общая теплоемкость складывается из теплоемкости древесного вещества и воды, а т. к. теплоемкость воды больше воздуха, который она заменяет, то теплоемкость увеличивается с возрастанием влажности.

Теплоемкость древесины имеет большое значение в тех случаях, когда она подвергается нагреванию. Например при расчете сушильных, парильных и варочных устройств необходимо знать теплоемкость, т. к. от этого зависит количество тепла, теряемого с выгружаемым материалом. Равным образом при сухой перегонке — количество топлива, необходимого, для нагрева до начала разложения, зависит от теплоемкости древесины.

Выбор сечения клееного бруса

Выбор ширины сечения клееного бруса зависит от особенностей его использования, прежде всего – от назначения строительного объекта и региона страны, в котором планируется его возведение.

Толщина клееного бруса, ммПредпочтительное использованиеРегионы
240Дома для круглогодичного проживанияНаиболее морозные и ветреные широты
200, 212Дома для круглогодичного проживания. В большинстве случаев – оптимальный выбор по сочетанию цены и расходов на отопление.Любые
160, 168Дома для сезонного проживания и временного пребывания зимой. Гостевые, дачные домики, бани.Любые. Области с теплым климатом
125Летние домики, барбекю, веранды, беседки, бани, строения, в которых не планируется проживание в зимнюю пору, межкомнатные перегородки Дома для круглогодичного проживанияЛюбые. Регионы с мягким климатом
85Беседки, хозяйственные постройки, лестницы, оконные конструкции и пр.Любые

Независимо от того, брус какой толщины вы выберете, стоит учесть, что тепловые потери через стены дома не превышают 33%. Остальное теряемое тепло уходит через оконные и дверные проемы (27%), подвальные и чердачные перекрытия (21%) и вентиляционную систему (19%). Поэтому толщина бруса играет не самую важную роль для обеспечения общей энергетической эффективности дома.



Теплопроводность

Способность проводить тепло называется теплопроводностью и характеризуется коэффициентом внутренней теплопроводности древесины.

Сухая древесины благодаря тому, что пустоты внутри ее заполнены воздухом, отличается весьма малой теплопроводностью. Деревянные стены при равных условиях могут быть значительно (примерно в 2,5 раза) тоньше кирпичных коэффициентов теплопроводности вдоль волокон примерно в 2—3 раза больше, чем поперек волокон, что видно из данных Мюнхенской лаборатории технической физики (табл.).

Табл. 1. Теплопроводность волокон

Коэф. теплопроводности в kcal*Порода
Дуб (сухой)Сосна (сухая)
Вдоль волокон0,30—0,370,30—0,32 0
Поперек волокон0,17—0,180,12—0,14

* В один час через стенку площади 1 м2, толщиной 1 м при разности t в 1°.

С повышением объемного веса теплопроводность, особенно поперек волокон, увеличивается. Более сильное влияние оказывает влажность: вода, заменяя воздух в полостях клеток, увеличивает теплопроводность влажной древесины.

Коэффициент сопротивления теплопередачи

Поскольку коэффициент теплопроводности не связан с толщиной материала, его практическое использование затруднительно. Поэтому на практике широко используется обратный параметр – коэффициент сопротивления теплопередачи. Он рассчитывается как отношение толщины материала к его коэффициенту теплопроводности. Требования к данному параметру при строительстве жилых зданий значатся в СНиП II-3-79 и СНиП 23-02-2003.

Читать еще:  Как утеплить крышу гаража

В зависимости от региона, в котором планируется строительство дома, рекомендованные значения коэффициента сопротивления теплопередачи материала могут быть различными:

РегионРекомендуемое тепловое сопротивление стен (min), м2*С/Вт
Якутск, Воркута5,6
Хабаровск, Чукотка, Камчатка4,9
Новосибирск, Магадан4,2
Москва, Санкт-Петербург, Красноярский край, Владимир, Алтай3,5
Волгоград, Белгород2,8
Астрахань, Ставрополь2,1
Сочи2,0

Для расчета термического сопротивления стены из конкретного материала нужно разделить толщину стены на коэффициент теплопроводности материала, из которого она сделана. Таким образом, для расчета рекомендуемой толщины стен нужно умножить коэффициент теплопроводности на значение теплового сопротивления. Выходит, что при строительстве дома из клееного бруса в Подмосковье или Санкт-Петербурге рекомендуемая толщина стен составляет 350 мм.

В действительности дома и коттеджи из клееного бруса с толщиной стен от 200 мм не нуждаются в дополнительном утеплении и стойко выдерживают даже сильные морозы на севере нашей страны. Дополнительное утепление может потребоваться стенам дачных домов и других сооружений, выполненных из клееного бруса с меньшей толщиной.

Звукопроводность

Отношение древесины к звуковым колебаниям определяется звукопроводностью, звукопоглощением, звуконепроницаемостью и способностью резонировать.

Звукопроводность характеризуется скоростью распространения в ней звука. Звук распространяется гораздо быстрее, чем по воздуху, причем скорость распространения вдоль волокон значительно больше, чем поперек. Если скорость распространения звука в воздухе принять за 1, то скорость в древесине по разным направлениям будет больше в 2— 17 раз, как это видно из табл. 5.

Табл 2. Распространение звука в древесине

в радиальном направлении

* По сравнению с воздухом.

Как видно, наиболее медленно звук распространяется но годовым слоям.

3вукопоглощение

3вукопоглощение характеризуется коэффициентом звукопоглощения, который определяет ту часть звуковой энергии, падающей на испытуемый предмет, которая от него не отражается. Определенный по методу стоячих волн коэффициент звукопоглощения имеет следующие величины (табл. 3).

Поглощение звука зависит от высоты тона и для древесины меньше, чем для кирпича. Способность материалов поглощать звук имеет первостепенное значение при устройстве аудиторий, концертных зал, театров и тому подобных помещений. Табл. 3. —К оэфициент звукопоглощения

МатериалКоэф. звукопоглощения при частоте колебании
2975691 0952 890
Кирпич0,0190,0190,0190,021
Сосна0,0120,0090,0160,009
Дуб0,0110,0070,0110,005

Звуконроницаемость

Звуконроницаемостью называется способность материала пропускать звук; эта способность характеризуется коэффициентом звукопроницаемости, т. е. отношением количества звуковой энергии, прошедшей через данный предмет (стену, перегородку), к количеству энергии, падающей на него.

Если звукопроницаемость открытого окна принять за единицу, то для стеклянной пластины коэф. звукопроницаемости будет равен 0,37, а для сосновой панели — 0,19. Звукопроницаемость материалов имеет огромное значение в жилищном строительстве, где для звукоизоляции помещений принимают специальные меры. Звук может передаваться из помещения в помещение по воздуху (громкий разговор, игра на музыкальных инструментах и пр.) или путем материального переноса (стук, ходьба и пр.).

В первом случае хорошим изолятором будет материал большой плотности, по которому хорошо распространяется звук; зато во втором случае такие материалы совершенно непригодны. Здесь необходимо употреблять материал малой плотности, с малой скоростью распространения в нем звука. Звукоизоляционная способность материалов поэтому может быть характеризована произведением скорости распространения звука в данном материале на его объемный вес. Это произведение, иногда называемое звуковым сопротивлением, для различных материалов неодинаково (табл. 4).

Табл. 4. 3вукоизоляционная способность различных материалов.

МатериалОбъемный весСкорость распростр. звука в мЗвуковое сопротивление
Воздух0,00133400,44
Стекло2,55 00012 500
Дуб0,73 3802 336
Ель0,55 2502 625
Пробка0,2500100

Выводы

Дома из клееного бруса – теплые и комфортные. Они хорошо сохраняют тепло зимой и прохладу летом, требуют сравнительно небольших затрат на отопление и отличаются приятным микроклиматом. Но чтобы построенный дом был максимально уютным и защищенным от существенных тепловых потерь, нужно еще на этапе его проектирования использовать комплексный подход к обеспечению его энергоэффективности. Дома для постоянного проживания обычно строятся из клееного бруса с сечением 200х280 или 212х192 мм, а в наиболее холодных регионах применяется брус с сечением 240х192 или 240х280 мм.

Электропроводность

Электропроводность, или способность проводить электричество, определяется величиной сопротивления, которое древесина оказывает прохождению по ней электрического тока.

Сухая обладает довольно высоким сопротивлением и может быть отнесена к полупроводникам. С повышением влажности сопротивление уменьшается, и она становится уже проводником. Понижение сопротивления имеет место до точки насыщения волокон, после чего электропроводность не меняется.

Сопротивление древесины прохождению электрического тока вдоль волокон значительно меньше, чем поперек, уменьшается с увеличением температуры. В табл. 5 приведено удельное сопротивление в Q-cм.u при t° 20° для некоторых пород (по Михайлову).

Табл. 4. Удельное сопротивление древесины

Зависимость электропроводности древесины от ее влажности использована при построении электрического прибора для быстрого определения влажности. Измеряя таким прибором сопротивление прохождению тока, можно по специальным таблицам (или непосредственно по шкале прибора) определить влажность. Этот способ определения влажности требует весьма мало времени, но точность таких приборов пока невысокая (1—2%). Кроме того эти приборы непригодны для определения влажности, когда она выше точки насыщения волокон. Тем не менее в складской практике эти приборы могут быть полезны для быстрой сортировки древесины по влажности.

Процесс производства многослойных изделий из древесины

На первом этапе производится распиловка заготовки на доски (ламели). Затем полученные ламели подвергаются сушке в специальной камере, в которой строго контролируется уровень влажности, обычно от 8% до 12%.

После сушки доски тщательно стругаются и подвергаются сортировке по прочности. На следующем этапе проводится маркировка и выторцовка забракованных участков. Под брак попадают сучки, неровности кромок и трещины.

Торцы ламелей фрезеруются зубчатым профилем и склеиваются под прессом до нужной длины. Для проведения склеивания ламелей между собой по плоскости наносится тонкий слой клея. После нанесения слоя клея доски собираются в виде пакета, который представляет собой заготовку необходимого сечения, и подвергаются прессованию.

На последнем этапе готовое клееное изделие профилируется.


Станок для производства склеенной древесины

Теплопроводность и звукопроводность древесины

Физические и механические свойства древесины

Качественные характеристики древесины, которые проявляются при испытаниях, не связанных с изменением химического состава, называются физическими свойствами. К ним относятся:

1) внешний вид, включающий:

4) тепловые свойства;

5) звукопроводность и др.

Цвет древесины определяется спектром отраженного ею светового потока и является важной характеристикой внешнего вида материала, поскольку его учитывают, выбирая древесину как для строительных нужд (внутренней отделки, окон и дверей и пр.), так и для изготовления музыкальных инструментов, мебели и т. п. Цвет древесины зависит не только от породы дерева, но и от природно-климатических условий местности, где оно произрастает, а также от возраста дерева. Цвет относится к таким качествам, которые могут изменяться, например, под действием воздуха, света, при поражении грибковыми заболеваниями, продолжительном контакте с водой.

Но, несмотря на все особенности, часто многие деревья обладают характерным цветом, позволяющим отличать их от других пород.

Блеском называется способность древесины направленно отражать световой поток. В наибольшей степени блеск свойствен таким российским породам деревьев, как дуб, бук, белая акация. Из импортного материала особым блеском отличается древесина атласного и красного деревьев.

Текстура – это рисунок, возникающий на срезе древесины и образованный годичными кольцами, сосудами и другими элементами структуры дерева.

Влажность представляет собой физическое качество древесины, которое определяется количеством находящейся в ней влаги. Процентное соотношение массы воды к массе сухой древесины называется относительной влажностью.

Вода в древесине представлена в трех видах:

1) в свободном состоянии;

2) в гигроскопическом состоянии;

3) в химически связанном состоянии.

Радиальный наклон волокон представляет собой наклон, расположенный по радиусу.

Свободная (другое название – «капиллярная») влага находится в полостях клеток и сосудов и заполняет межклеточное пространство.

Гигроскопическая влага содержится в стенках клеток.

Химический состав вещества включает химически связанную воду.

На практике древесина различается степенью влажности и бывает:

1) абсолютно сухой при влажности 0% (достижимо только в условиях лаборатории при температуре 103 ± 2°С);

2) комнатно-сухой – 8–15% (при длительной выдержке в отапливаемом помещении);

3) воздушно-сухой – 16–20% (при выдержке на открытом воздухе);

4) полусухой – 21–23%;

5) сырой – более 23%;

6) свежесрубленной – 40–75% (влажность вегетирующего дерева);

7) мокрой – более 75% (при выдержке в течение длительного времени в воде).

Для определения физико-механических параметров древесины ее кондиционируют, то есть доводят до нормализованной влажности – 12%.

Если древесина продолжительное время находится в условиях постоянной относительной влажности, то она приобретает определенную влажность, которая называется равновесной.

При изменении условий хранения материала в ту или иную сторону (то есть при повышении или понижении влажности) наблюдается набухание или усушка материала.

Усушку вызывает удаление из древесины связанной воды, что обусловливает уменьшение ее линейных размеров и объема, в отличие от удаления свободной воды, которое не приводит к усушке. Величина усушки древесины прямо пропорциональна степени уменьшения ее влажности.

Объем древесины при высыхании по разным направлениям уменьшается неодинаково. Средняя величина усушки примерно равна:

1) вдоль волокон – 0,1–0,3%;

2) поперек волокон по окружности годовых колец (в тангенциальном направлении) – 6–10%;

3) поперек волокон от коры к сердцевине (в радиальном направлении) – 3–7%.

Полная объемная усушка варьируется в пределах 11–17%. Усушка, понижающая влажность древесины на 1%, называется коэффициентом усушки и неодинакова у разных пород древесины. Наиболее высокий коэффициент усушки характерен для дуба, бука, граба, клена и составляет до 11%. Умеренное усыхание присуще сосне, осине, тополю – до 3–5%. Менее всего подвержены усыханию ель и лиственница – до 2%. Величина усушки определяется как породой дерева, там и природно-климатическими условиями, в которых оно растет. Усушка должна учитываться при распиловке бревен, сушке пиломатериалов и т. п.

Крыловатость – это дефект пиломатериала, расположенный по всей длине и означающий спиральную изогнутость.

Под влиянием внешних нагрузок и за счет различных изменений объема древесины при сушке в ней возникают внутренние напряжения. При этом для поверхностных слоев, в которых влажность ниже, чем в центре, характерны растягивающие напряжения, а для более глубоких, внутренних слоев – сжимающие. Растягивающие напряжения, достигая предела прочности материала в тангенциальном положении, приводит к трещинообразованию. К тому же, вследствие того что усушка протекает неодинаково в разных направлениях, возникает коробление, которое представляет собой изменение формы пиломатериалов и леса при сушке или неадекватном хранении, а также во время механической обработки, например при несимметричном строгании. Покоробленность бывает продольной и поперечной; продольная, в свою очередь, – по кромке, пласти и в виде крыловатости (рис. 2).

Рис. 2. Виды покоробленности: а – по пласти (простая); б – продольная по пласти (сложная); в – продольная по кромке; г – поперечная; д – крыловатость

Способность древесины впитывать влагу из воздуха называется влагопоглощением. Это ее свойство не зависит от породы и является отрицательным качеством, поскольку сильное увлажнение, возникающее в условиях повышенной влажности, ухудшает физико-механические свойства древесины, ее биостойкость и пр.

При повышенном содержании в древесине связанной воды наблюдается разбухание, то есть увеличение линейных размеров и объема древесины. Данное качество древесины является противоположным усушке и протекает по тем же закономерностям: максимальное разбухание древесины происходит поперек волокон, минимальное – вдоль волокон.

При погружении в воду за счет водопоглощения возрастает влажность древесины. Наибольшая влажность включает максимальное количество как связанной, так и свободной воды. Количество последней напрямую зависит от плотности древесины: чем больше полостей в древесине, тем больше ее влажность, и наоборот.

Сортиментом называется комплекс свойств, признаков, качеств, по которым какие-либо изделия могут принадлежать к тому или иному сорту.

Плотность древесины зависит от совокупности веществ, образующих оболочку клеток. Поскольку клетки разных пород древесины похожи по своему строению, то ее плотность варьируется в пределах 1490–1560 кг/м 3 (можно сказать, что этот параметр для всех пород примерно равен 1,53 г/см 3 ).

Читать еще:  Как утеплить квартиру утепление стен изнутри

Плотность бывает условной и средней. Условная плотность представляет собой отношение минимальной массы к максимальному объему образца. Средняя влажность определяется влажностью и пористостью древесины, а ее значение указывается применительно к 12%-ной влажности.

По последнему параметру древесина делится на группы, которые включают древесину малой плотности (540 и менее), средней плотности (550–740) и высокой плотности (750 и выше). Условная и средняя плотность самых распространенных древесных пород представлена в табл. 2.

Таблица 2 Показатели средней и условной плотности древесины

В зависимости от средней плотности древесные породы разделяются на:

1) легкие (пихта, кедр, тополь, липа, сосна);

2) средние (береза, вяз, бук, ясень);

3) тяжелые (клен, дуб, граб).

К тепловым свойствам древесины относятся теплоемкость, теплопроводность и тепловое расширение.

Сбежистость – это равномерное и постепенное уменьшение диаметра по всей длине бревна. Если оно равняется более 1 см на каждый метр длины ствола, то такое изменение считается пороком древесины.

Теплоемкость – это способность древесины накапливать тепло. Показателем теплоемкости является удельная теплоемкость.

Это количество теплоты, требующееся для нагревания 1 кг древесины на 1°С. Теплоемкость едина для любой древесины независимо от породы и возрастает при увеличении влажности.

Теплопроводность является свойством древесины, которое показывает интенсивность переноса тепла в материале.

При изменении таких параметров, как температура, влажность и плотность, коэффициент теплопроводности возрастает, причем вдоль волокон она бывает в 2 раза выше, чем поперек.

Тепловым расширением называется способность древесины увеличивать линейные размеры и объем при повышении температуры. Коэффициент теплового расширения у древесины по сравнению с таким же показателем у металла, стекла или бетона в 3–10 раз меньше.

Звукопроводность – это способность материала проводить звук. Скорость распространения звука в древесине зависит от его направленности и убывает следующим образом:

1) вдоль волокон – 1500 м/с;

2) радиально – 2000 м/с;

3) тангенциально – 1500 м/с.

По сравнению со звукопроводностью воздуха звукопроводность древесины вдоль волокон в 3–4 раза, а поперек – в 16 раз выше.

Прочность, твердость, ударная вязкость – это механические качества древесины.

Закомелистостью называется резкое увеличение диаметра ствола в его нижней части, при этом диаметр торца у комля, как минимум, в 1,2 раза больше диаметра торца, измеренного в метре от первоначальной точки.

Прочность – это свойство древесины сопротивляться механическим нагрузкам (растяжению, сжатию, изгибанию, сдвиганию), оно характеризуется пределом прочности, средняя величина которого равна 130 МПа. При растяжении поперек волокон прочность древесины равна 1 /20 предела прочности при растяжении вдоль волокон.

При сжатии ряд древесных пород может уплотняться на треть начальной высоты образца, при этом не разрушаясь.

Твердость представляет собой способность древесины сопротивляться внедрению в нее постороннего тела, имеющего определенную форму и объем. Практически путем было установлено, что твердость торцовой поверхности выше твердости боковой поверхности. Причем данный показатель неодинаков у лиственных и хвойных пород. У первых он выше на 30%, а у вторых – на 40%.

В табл. 3 приведена классификация древесных пород на группы в зависимости от степени их твердости.

Таблица 3 Классификация древесных пород по степени твердости

есть свойство древесины поглощать механическое воздействие, при этом не разрушаясь. Наибольшая ударная вязкость – у граба, березы и осины, наименьшая – у пихты сибирской и сосны кедровой.

Крень – это изменение строения древесины хвойных пород, имеет вид резкого утолщения поздней древесины годичных слоев. Бываем местная, при этом захватывает несколько годичных слоев, и сплошная, занимающая половину и более площади поперечного сечения.

Кроме перечисленных механических свойств древесины, можно назвать ее способность удерживать металлический крепеж (при вбивании гвоздя волокна древесины раздвигаются или перерезаются, оказывая при этом на гвоздь определенное давление, которое называется трением, благодаря чему гвоздь и удерживается) и изгибаться (наилучшей способностью гнуться отличаются лиственные породы, причем кольцесосудистые древесные породы (например, дуб) гнутся более легко, чем рассеянно-сосудистые (например, береза и др.); для хвойных пород это нехарактерно).

Теплопроводность древесины. Теплотехника деревянных домов

23 ноября 2020

В любом здании внутренняя и внешняя поверхности нагреваются различно. В результате от точки большего нагрева к точке меньшего нагрева начинается поток тепла. Передача тепла в разных материалах происходит по-разному. На это влияет такое свойства материалов как теплопроводность.

Теплопроводность — свойство материалов проводить тепло от нагретой части к не нагретой вследствие хаотического движения частиц (молекул, атомов и т.д.). Происходит это в результате столкновения частиц. Столкновения именно хаотичного, а не направленного.

В рамках строительства домов при рассмотрении вопроса теплопроводности, потери тепла, когда стены имеют ровную поверхность, условно принимают передачу тепла как прямой, а не хаотичный поток. При этом и температура рассматривается не поверхности материала, а температуры внутри помещения и снаружи.

Рассмотрим особенности теплопроводности и потери тепла в деревянных домах.

Древесина как строительный материал

Не однократно уже указывалось в наших статьях, что строительный материал изначально, впрочем, часто и сейчас, привязывался к регионам строительства. Вполне естественно, что в России основным строительным материалом стала древесина разных пород деревьев с учетом места их произрастания.

В местах отсутствия леса, например, в степных районах, таким строительным материалом становился саман — смесь глины с соломой (именно эта идея лежит в изготовлении современного арболита). В местах выхода скалистых пород строительным материалом мог становиться натуральный камень. В первую очередь известняк, так как он легче поддавался обработке.

Но даже при наличии других строительных материалов предпочтение часто отдавалось древесине. Более того, происходит это и в настоящее время даже при условии наличия развитой транспортной сети и грузоперевозок строительных материалов.

Теплопроводность древесины

Строительство домов из дерева ведется как в отношении маленьких дачных домиков, небольших домов для постоянного проживания или загородного отдыха, так и в отношении больших коттеджей. Одним из важнейших факторов является достаточно низкая теплопроводность древесины. Сравним данные на конкретных примерах.

* Данные из СНиП II-А.7-62 Строительная теплотехника и СНиП II-3-79 Строительная теплотехника

Строительный материалПлотность, кг/м3Теплопроводность, Вт/(м*град)Теплоемкость, Дж/(кг*град)
Бетон на гравии или щебне из камня*24001,51840
Бетон на песке1800..25000,7710
Блок газобетонный400. 8000,15. 0,3
Блок керамический поризованный0,2
Газо- и пенобетон*8000,21840
Известняк (облицовка)*1400 — 20000,49 — 0,93850 — 920
Керамзитобетон на кварцевом песке с поризацией*12000,41840
Керамзитобетон легкий500 — 12000,18 — 0,46
Керамзитобетон на керамзитовом песке*18000,66840
Керамика теплая0,12
Кирпич красный плотный1700 — 21000,67840 — 880
Кирпич красный пористый15000,44
Кирпич облицовочный18000,93880
Кирпич силикатный1000 — 22000,5 — 1,3750 — 840
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе*18000,56880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе*1200 — 16000,35 — 0,47880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе*18000,7880
Ракушечник1000 — 18000,27 — 0,63
Теплопроводность и другие свойства древесины разных пород деревьев
Строительный материалПлотность, кг/м3Теплопроводность, Вт/(м*град)Теплоемкость, Дж/(кг*град)
Берёза510..7700,151250
Дуб вдоль волокон*7000,232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)*7000,12300
Кедр500 — 5700,095
Клён620 — 7500,19
Липа, (15% влажности)320 — 6500,15
Лиственница6700,13
Пихта450 — 5500,1 — 0,262700
Сосна и ель вдоль волокон*5000,182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)*5000,092300
Сосна смолистая 15% влажности600 — 7500,15 — 0,232700
Тополь350 — 5000,17

Если сравнить показатели в таблицах, то хорошо видно, что теплопроводность древесины ниже теплопроводности многих стеновых материалов. Лишь некоторые современные материалы приближаются, поэтому показатель с деревом (в таблицу не выведены данные по утеплителям, т.к. это не конструктивный материал, который будет рассмотрен в отдельной статье).

Изменение требований к теплосопротивлению ограждающих конструкций: слева R

При сравнении разных видов пород необходимо отметить, что на показатель теплопроводности древесины оказывает влияние её плотность и влажность. Плотность одной и тоже породы дерева может зависеть от места произрастания. По этой причине в таблице местами указаны несколько показателей.

Одной из самых «теплых» пород деревьев является кедр. Его коэффициент теплопроводности составляет 0,095 Вт/(м*С). Дом, построенный из кедра, будет очень хорошим вложением, так как позволит экономить на отоплении.

Ель также является хорошим решением для строительства в плане экономии на отоплении. Схожа с елью пихта, но только при условии, что нет повышенной смолистости. Именно смолистость сосны и её плотность отодвигает её на следующую позицию.

Плотность деревьев, особенно хвойных, очень зависит от места их произрастания, а это сказывается на теплопроводности. Показательным примером является именно сосна.

Так в северных районах России, например, Астраханская область, которая славится мачтовыми соснами с малой сбежестью ствола, готовой прирост у сосны не большой, древесина плотная. В Вологодской области часто предпочитают строить из ели, а не из сосны. В тоже время в южной тайге сосна имеет резкий прирост летом с древесиной меньшей плотности. В результате теплопроводность такой сосны ниже, но и сбежесть больше.

В строительстве закрепилась практика применения для расчетов усредненного коэффициента теплопроводности для деревянных домов на основе средних данных по сосне, то есть 0,15 Вт/(м* 0 С). В действительности, если рассматривать сухую древесину, то коэффициент теплопроводности составит 0,11 — 0,13 для ели, пихты, сосны и лиственницы и менее 0,1 Вт/(м* 0 С) для кедра. Эти показатели сопоставимы, например, с газосиликатным блоком автоклавного производства.

Толщина стены из дерева

С учетом коэффициента теплопроводности 0,11 — 0,13 1 Вт/(м* 0 С) и сопротивления теплопередаче для средней полосы европейской части России равной 3 м2* 0 С/Вт. Таким образом, толщина стены должна равняться 0,11*3=0,33 метра или 0,13*3=0,39 метра. С учетом этих показателей и применяется усредненный вариант толщины стены для сосны 37 см. Это норма для энерго- и теплосберегающих условий.

Для нас привычно, что стена в доме ровная, плоская. Учитывая тот факт, что тепло передается благодаря хаотичному движению частиц, но в условиях плоской стены можно говорить о прямолинейной передаче тепла от зоны с высокой температурой в зону с низкой. В условиях со стеной из бруса и лафета для энергоэффективного дома потребуется толщина стены 37 см.

Но в условиях с бревном ситуация будет выглядеть иначе. Закругленная поверхность «создаст» разнонаправленные векторы передачи тепла. В результате чего за толщину стены необходимо принимать диаметр бревна, а не его половину по самому узкому месту. Зону межвенцового паза или, как еще называют, теплового моста можно рассматривать как «мостик холода» аналогично раствору в кирпичной кладке.

Иными словами, в случае строительства дома из бревна, он должен строиться из бревна диаметром 37 см.

Здесь необходимо заметить, что толщина стены это только одно из условий энергоэффективности. Существует еще и понятие допустимых к эксплуатации условий когда, например, рассматривается температура помещений не 24 0 С, а 18 — 20 0 С.

Кроме этого возможна ситуация, когда строительство энергоэффективного дома оказывается нерациональным с учетом стоимости строительство и дальнейшего ремонта, расход на которые может оказаться выше экономии на отоплении. Если же посмотреть СНиП 30-ти летней давности, то выяснится, что достаточной была толщина стены из дерева в 2 — 3 раза тоньше.

Строить дом с большей толщиной стены и меньше тратить на отоплении или построить дом дешевле, но на отоплении тратить больше — это вопрос, на который каждый должен ответить для себя лично. Проектирование дома должно вестись с учетом ответа на этот вопрос.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector